from .mcts_pure import MCTSPlayer as MCTSpure from .mcts_alphaZero import MCTSPlayer as alphazero from .dueling_net import PolicyValueNet import numpy as np class Board(object): """board for the game""" def __init__(self, **kwargs): self.last_move = None self.availables = None self.current_player = None self.width = int(kwargs.get('width', 8)) # if no width, default 8 self.height = int(kwargs.get('height', 8)) self.board_map = np.zeros(shape=(self.width, self.height), dtype=int) # board states stored as a dict, # key: move as location on the board, # value: player as pieces type self.states = {} # need how many pieces in a row to win self.n_in_row = int(kwargs.get('n_in_row', 5)) self.players = kwargs.get('players', [1, 2]) # player1 and player2 self.init_board(0) def init_board(self, start_player=0): if self.width < self.n_in_row or self.height < self.n_in_row: raise Exception('board width and height can not be ' 'less than {}'.format(self.n_in_row)) self.current_player = self.players[start_player] # start player # keep available moves in a list self.availables = list(range(self.width * self.height)) self.states = {} self.last_move = -1 def move_to_location(self, move: int): """ 3*3 board's moves like: 6 7 8 3 4 5 0 1 2 and move 5's location is (1,2) """ h = move // self.width w = move % self.width return [h, w] def location_to_move(self, location): if len(location) != 2: return -1 h = location[0] w = location[1] move = h * self.width + w if move not in range(self.width * self.height): return -1 return move def current_state(self): """ return the board state from the perspective of the current player. state shape: 4*width*height 这个状态数组具有四个通道: 第一个通道表示当前玩家的棋子位置,第二个通道表示对手的棋子位置,第三个通道表示最后一步移动的位置。 第四个通道是一个指示符,用于表示当前轮到哪个玩家(如果棋盘上的总移动次数是偶数,那么这个通道的所有元素都为1,表示是第一个玩家的回合;否则,所有元素都为0,表示是第二个玩家的回合)。 每个通道都是一个 width x height 的二维数组,代表着棋盘的布局。对于第一个和第二个通道,如果一个位置上有当前玩家或对手的棋子,那么该位置的值为 1,否则为0。 对于第三个通道,只有最后一步移动的位置是1,其余位置都为0。对于第四个通道,如果是第一个玩家的回合,那么所有的位置都是1,否则都是0。 最后,状态数组在垂直方向上翻转,以匹配棋盘的实际布局。 """ square_state = np.zeros((4, self.width, self.height)) if self.states: moves, players = np.array(list(zip(*self.states.items()))) move_curr = moves[players == self.current_player] move_oppo = moves[players != self.current_player] square_state[0][move_curr // self.width, move_curr % self.height] = 1.0 square_state[1][move_oppo // self.width, move_oppo % self.height] = 1.0 # indicate the last move location square_state[2][self.last_move // self.width, self.last_move % self.height] = 1.0 if len(self.states) % 2 == 0: square_state[3][:, :] = 1.0 # indicate the colour to play return square_state[:, ::-1, :] def do_move(self, move): self.states[move] = self.current_player # get (x,y) of this move x, y = self.move_to_location(move) self.board_map[x][y] = self.current_player self.availables.remove(move) self.current_player = ( self.players[0] if self.current_player == self.players[1] else self.players[1] ) self.last_move = move def has_a_winner(self): width = self.width height = self.height states = self.states n = self.n_in_row moved = list(set(range(width * height)) - set(self.availables)) if len(moved) < self.n_in_row * 2 - 1: return False, -1 for m in moved: h = m // width w = m % width player = states[m] if (w in range(width - n + 1) and len(set(states.get(i, -1) for i in range(m, m + n))) == 1): return True, player if (h in range(height - n + 1) and len(set(states.get(i, -1) for i in range(m, m + n * width, width))) == 1): return True, player if (w in range(width - n + 1) and h in range(height - n + 1) and len(set(states.get(i, -1) for i in range(m, m + n * (width + 1), width + 1))) == 1): return True, player if (w in range(n - 1, width) and h in range(height - n + 1) and len(set(states.get(i, -1) for i in range(m, m + n * (width - 1), width - 1))) == 1): return True, player return False, -1 def game_end(self): """Check whether the game is ended or not""" win, winner = self.has_a_winner() if win: return True, winner elif not len(self.availables): return True, -1 return False, -1 def get_current_player(self): return self.current_player