File size: 2,114 Bytes
5e19394
 
1bb18f1
 
5e19394
1bb18f1
 
5e19394
 
 
 
 
 
 
1bb18f1
 
 
5e19394
 
 
 
1bb18f1
 
5e19394
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bb18f1
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
import joblib
import pandas as pd
import logging

app = FastAPI()
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

model = joblib.load('ModelV2.joblib')

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

@app.post("/predict")
async def predict(data: dict):
    try:
        # Map input keys to expected column names
        column_mapping = {
            "crop_name": "Crop Name",
            "target_yield": "Target Yield",
            "field_size": "Field Size",
            "ph": "pH (water)",
            "organic_carbon": "Organic Carbon",
            "nitrogen": "Total Nitrogen",
            "phosphorus": "Phosphorus (M3)",
            "potassium": "Potassium (exch.)",
            "soil_moisture": "Soil moisture"
        }

        # Create a new dictionary with mapped keys
        mapped_data = {column_mapping.get(k, k): v for k, v in data.items()}

        # Create DataFrame
        df = pd.DataFrame([mapped_data])

        # Check if all required columns are present
        required_columns = set(column_mapping.values())
        missing_columns = required_columns - set(df.columns)
        if missing_columns:
            raise ValueError(f"Missing required columns: {missing_columns}")

        # Make prediction
        prediction = model.predict(df)
        
        return {
            "nitrogen_need": float(prediction[0][0]),
            "phosphorus_need": float(prediction[0][1]),
            "potassium_need": float(prediction[0][2])
        }

    except ValueError as ve:
        logger.error(f"ValueError in predict: {str(ve)}")
        raise HTTPException(status_code=400, detail=str(ve))
    except Exception as e:
        logger.error(f"Unexpected error in predict: {str(e)}")
        raise HTTPException(status_code=500, detail="An unexpected error occurred")

@app.get("/")
async def root():
    return {"message": "NPK Needs Prediction API"}