import torch import nltk import validators import streamlit as st from transformers import pipeline, T5Tokenizer # local modules from extractive_summarizer.model_processors import Summarizer from src.utils import clean_text, fetch_article_text from src.abstractive_summarizer import ( abstractive_summarizer, preprocess_text_for_abstractive_summarization, ) # # abstractive summarizer model # @st.cache() # def load_abs_model(): # tokenizer = T5Tokenizer.from_pretrained("t5-base") # model = T5ForConditionalGeneration.from_pretrained("t5-base") # return tokenizer, model if __name__ == "__main__": # --------------------------------- # Main Application # --------------------------------- st.title("Text Summarizer 📝") summarize_type = st.sidebar.selectbox( "Summarization type", options=["Extractive", "Abstractive"] ) # --------------------------- # SETUP nltk.download("punkt") abs_tokenizer_name = "t5-base" abs_model_name = "t5-base" abs_tokenizer = T5Tokenizer.from_pretrained(abs_tokenizer_name) # --------------------------- inp_text = st.text_input("Enter text or a url here") is_url = validators.url(inp_text) if is_url: # complete text, chunks to summarize (list of sentences for long docs) text, clean_txt = fetch_article_text(url=inp_text) else: clean_txt = clean_text(inp_text) # view summarized text (expander) with st.expander("View input text"): if is_url: st.write(clean_txt[0]) else: st.write(clean_txt) summarize = st.button("Summarize") # called on toggle button [summarize] if summarize: if summarize_type == "Extractive": if is_url: text_to_summarize = " ".join([txt for txt in clean_txt]) else: text_to_summarize = clean_txt # extractive summarizer with st.spinner( text="Creating extractive summary. This might take a few seconds ..." ): ext_model = Summarizer() summarized_text = ext_model(text_to_summarize, num_sentences=6) elif summarize_type == "Abstractive": with st.spinner( text="Creating abstractive summary. This might take a few seconds ..." ): text_to_summarize = clean_txt abs_summarizer = pipeline( "summarization", model=abs_model_name, tokenizer=abs_tokenizer_name ) if not is_url: # list of chunks text_to_summarize = preprocess_text_for_abstractive_summarization( tokenizer=abs_tokenizer, text=clean_txt ) tmp_sum = abs_summarizer(text_to_summarize, do_sample=False) summarized_text = " ".join([summ["summary_text"] for summ in tmp_sum]) # final summarized output st.subheader("Summarized text") st.info(summarized_text)