Spaces:
Runtime error
Runtime error
add t5 abstractive summarizer
Browse files
app.py
CHANGED
@@ -1,24 +1,53 @@
|
|
|
|
1 |
import streamlit as st
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
if __name__ == "__main__":
|
5 |
-
|
6 |
-
import sys
|
7 |
-
sys.path.append("../extractive_summarizer")
|
8 |
st.title("Text Summarizer π")
|
9 |
summarize_type = st.sidebar.selectbox("Summarization type", options=["Extractive", "Abstractive"])
|
10 |
|
11 |
inp_text = st.text_input("Enter the text here")
|
12 |
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
st.subheader("Summarized text")
|
23 |
summarized_text = model(inp_text, num_sentences=5)
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
import streamlit as st
|
3 |
+
from extractive_summarizer.model_processors import Summarizer
|
4 |
+
from transformers import T5Tokenizer, T5ForConditionalGeneration, T5Config
|
5 |
|
6 |
+
def abstractive_summarizer(text : str):
|
7 |
+
|
8 |
+
model = T5ForConditionalGeneration.from_pretrained('t5-large')
|
9 |
+
tokenizer = T5Tokenizer.from_pretrained('t5-large')
|
10 |
+
device = torch.device('cpu')
|
11 |
+
|
12 |
+
preprocess_text = text.strip().replace("\n", "")
|
13 |
+
t5_prepared_text = "summarize: " + preprocess_text
|
14 |
+
tokenized_text = tokenizer.encode(t5_prepared_text, return_tensors="pt").to(device)
|
15 |
+
|
16 |
+
# summmarize
|
17 |
+
summary_ids = model.generate(tokenized_text,
|
18 |
+
num_beams=4,
|
19 |
+
no_repeat_ngram_size=2,
|
20 |
+
min_length=30,
|
21 |
+
max_length=100,
|
22 |
+
early_stopping=True)
|
23 |
+
abs_summarized_text = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
24 |
+
|
25 |
+
return abs_summarized_text
|
26 |
|
27 |
if __name__ == "__main__":
|
28 |
+
|
|
|
|
|
29 |
st.title("Text Summarizer π")
|
30 |
summarize_type = st.sidebar.selectbox("Summarization type", options=["Extractive", "Abstractive"])
|
31 |
|
32 |
inp_text = st.text_input("Enter the text here")
|
33 |
|
34 |
+
# view summarized text (expander)
|
35 |
+
with st.expander("View input text"):
|
36 |
+
st.write(inp_text)
|
37 |
+
|
38 |
+
summarize = st.button("Summarize")
|
39 |
|
40 |
+
# called on toggle button [summarize]
|
41 |
+
if summarize:
|
42 |
+
if summarize_type == "Extractive":
|
43 |
+
# extractive summarizer
|
44 |
+
# init model
|
45 |
+
model = Summarizer()
|
|
|
46 |
summarized_text = model(inp_text, num_sentences=5)
|
47 |
+
|
48 |
+
elif summarize_type == "Abstractive":
|
49 |
+
summarized_text = abstractive_summarizer(inp_text)
|
50 |
+
|
51 |
+
# final summarized output
|
52 |
+
st.subheader("Summarized text")
|
53 |
+
st.info(summarized_text)
|