Spaces:
Runtime error
Runtime error
import re | |
import requests | |
import docx2txt | |
from io import StringIO | |
from PyPDF2 import PdfFileReader | |
from bs4 import BeautifulSoup | |
from nltk.tokenize import sent_tokenize | |
emoji_pattern = re.compile( | |
"[" | |
u"\U0001F600-\U0001F64F" # emoticons | |
u"\U0001F300-\U0001F5FF" # symbols & pictographs | |
u"\U0001F680-\U0001F6FF" # transport & map symbols | |
u"\U0001F1E0-\U0001F1FF" # flags (iOS) | |
u"\U00002702-\U000027B0" | |
u"\U000024C2-\U0001F251" | |
"]+", | |
flags=re.UNICODE, | |
) | |
def clean_text(x): | |
# x = x.lower() # lowercase | |
x = x.encode("ascii", "ignore").decode() # unicode | |
x = re.sub(r"https*\S+", " ", x) # url | |
x = re.sub(r"@\S+", " ", x) # mentions | |
x = re.sub(r"#\S+", " ", x) # hastags | |
# x = x.replace("'", "") # remove ticks | |
# x = re.sub("[%s]" % re.escape(string.punctuation), " ", x) # punctuation | |
# x = re.sub(r"\w*\d+\w*", "", x) # numbers | |
x = re.sub(r"\s{2,}", " ", x) # over spaces | |
x = emoji_pattern.sub(r"", x) # emojis | |
x = re.sub("[^.,!?A-Za-z0-9]+", " ", x) # special charachters except .,!? | |
return x | |
def fetch_article_text(url: str): | |
r = requests.get(url) | |
soup = BeautifulSoup(r.text, "html.parser") | |
results = soup.find_all(["h1", "p"]) | |
text = [result.text for result in results] | |
ARTICLE = " ".join(text) | |
ARTICLE = ARTICLE.replace(".", ".<eos>") | |
ARTICLE = ARTICLE.replace("!", "!<eos>") | |
ARTICLE = ARTICLE.replace("?", "?<eos>") | |
sentences = ARTICLE.split("<eos>") | |
current_chunk = 0 | |
chunks = [] | |
for sentence in sentences: | |
if len(chunks) == current_chunk + 1: | |
if len(chunks[current_chunk]) + len(sentence.split(" ")) <= 500: | |
chunks[current_chunk].extend(sentence.split(" ")) | |
else: | |
current_chunk += 1 | |
chunks.append(sentence.split(" ")) | |
else: | |
print(current_chunk) | |
chunks.append(sentence.split(" ")) | |
for chunk_id in range(len(chunks)): | |
chunks[chunk_id] = " ".join(chunks[chunk_id]) | |
return ARTICLE, chunks | |
def preprocess_text_for_abstractive_summarization(tokenizer, text): | |
sentences = sent_tokenize(text) | |
# initialize | |
length = 0 | |
chunk = "" | |
chunks = [] | |
count = -1 | |
for sentence in sentences: | |
count += 1 | |
combined_length = ( | |
len(tokenizer.tokenize(sentence)) + length | |
) # add the no. of sentence tokens to the length counter | |
if combined_length <= tokenizer.max_len_single_sentence: # if it doesn't exceed | |
chunk += sentence + " " # add the sentence to the chunk | |
length = combined_length # update the length counter | |
# if it is the last sentence | |
if count == len(sentences) - 1: | |
chunks.append(chunk.strip()) # save the chunk | |
else: | |
chunks.append(chunk.strip()) # save the chunk | |
# reset | |
length = 0 | |
chunk = "" | |
# take care of the overflow sentence | |
chunk += sentence + " " | |
length = len(tokenizer.tokenize(sentence)) | |
return chunks | |
def read_pdf(file): | |
pdfReader = PdfFileReader(file) | |
count = pdfReader.numPages | |
all_page_text = "" | |
for i in range(count): | |
page = pdfReader.getPage(i) | |
all_page_text += page.extractText() | |
return all_page_text | |
def read_text_from_file(file): | |
# read text file | |
if file.type == "text/plain": | |
# To convert to a string based IO: | |
stringio = StringIO(file.getvalue().decode("utf-8")) | |
# To read file as string: | |
file_content = stringio.read() | |
# read pdf file | |
elif file.type == "application/pdf": | |
file_content = read_pdf(file) | |
# read docx file | |
elif ( | |
file.type | |
== "application/vnd.openxmlformats-officedocument.wordprocessingml.document" | |
): | |
file_content = docx2txt(file) | |
return file_content | |