Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -1,49 +1,45 @@
|
|
1 |
-
|
2 |
-
from keras.
|
|
|
3 |
from fastapi import FastAPI, HTTPException
|
4 |
from pydantic import BaseModel
|
5 |
import numpy as np
|
6 |
from typing import List
|
7 |
|
8 |
class InputData(BaseModel):
|
9 |
-
data: List[float]
|
10 |
|
11 |
app = FastAPI()
|
12 |
|
13 |
-
#
|
14 |
-
def
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
]
|
23 |
-
)
|
24 |
-
model.load_weights(
|
25 |
-
"model.h5"
|
26 |
-
) # Aseg煤rate de que los nombres de las capas coincidan para que los pesos se carguen correctamente
|
27 |
-
model.compile(
|
28 |
-
loss="mean_squared_error", optimizer="adam", metrics=["binary_accuracy"]
|
29 |
-
)
|
30 |
-
return model
|
31 |
-
|
32 |
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
|
|
|
|
35 |
|
36 |
# Ruta de predicci贸n
|
37 |
@app.post("/predict/")
|
38 |
async def predict(data: InputData):
|
39 |
-
print(f"Data: {data}")
|
40 |
-
global model
|
41 |
try:
|
42 |
-
|
43 |
-
input_data = np.array(data.data).reshape(
|
44 |
-
1, -1
|
45 |
-
) # Asumiendo que la entrada debe ser de forma (1, num_features)
|
46 |
prediction = model.predict(input_data).round()
|
47 |
return {"prediction": prediction.tolist()}
|
48 |
except Exception as e:
|
49 |
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
from keras.models import Sequential, model_from_json
|
3 |
+
from keras.layers import InputLayer, Dense
|
4 |
from fastapi import FastAPI, HTTPException
|
5 |
from pydantic import BaseModel
|
6 |
import numpy as np
|
7 |
from typing import List
|
8 |
|
9 |
class InputData(BaseModel):
|
10 |
+
data: List[float]
|
11 |
|
12 |
app = FastAPI()
|
13 |
|
14 |
+
# Cargar y procesar datos desde titanic-train.csv
|
15 |
+
def load_data():
|
16 |
+
try:
|
17 |
+
df = pd.read_csv("titanic-train.csv")
|
18 |
+
# Ajustar procesamiento de datos seg煤n caracter铆sticas necesarias para el modelo
|
19 |
+
# Aqu铆 podr铆as filtrar y escalar las caracter铆sticas
|
20 |
+
return df
|
21 |
+
except Exception as e:
|
22 |
+
raise HTTPException(status_code=500, detail=f"Error cargando los datos: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
# Cargar el modelo
|
25 |
+
def load_model():
|
26 |
+
with open("model.json", "r") as json_file:
|
27 |
+
model_config = json_file.read()
|
28 |
+
model = model_from_json(model_config)
|
29 |
+
model.load_weights("model.h5")
|
30 |
+
model.compile(loss="mean_squared_error", optimizer="adam", metrics=["binary_accuracy"])
|
31 |
+
return model
|
32 |
|
33 |
+
model = load_model()
|
34 |
+
data = load_data() # Cargar y almacenar los datos al iniciar la aplicaci贸n
|
35 |
|
36 |
# Ruta de predicci贸n
|
37 |
@app.post("/predict/")
|
38 |
async def predict(data: InputData):
|
|
|
|
|
39 |
try:
|
40 |
+
input_data = np.array(data.data).reshape(1, -1)
|
|
|
|
|
|
|
41 |
prediction = model.predict(input_data).round()
|
42 |
return {"prediction": prediction.tolist()}
|
43 |
except Exception as e:
|
44 |
raise HTTPException(status_code=500, detail=str(e))
|
45 |
+
|