import numpy as np # Define the getDateFeatures() function def getDateFeatures(df): df['holiday_type'] = 'Workday' df['is_holiday'] = False df['year'] = df['date'].dt.year df['month'] = df['date'].dt.month df['dayofmonth'] = df['date'].dt.day df['dayofweek'] = df['date'].dt.dayofweek df['weekofyear'] = df['date'].dt.weekofyear df['quarter'] = df['date'].dt.quarter df['is_month_start'] = df['date'].dt.is_month_start.astype(int) df['is_month_end'] = df['date'].dt.is_month_end.astype(int) df['is_quarter_start'] = df['date'].dt.is_quarter_start.astype(int) df['is_quarter_end'] = df['date'].dt.is_quarter_end.astype(int) df['is_year_start'] = df['date'].dt.is_year_start.astype(int) df['is_year_end'] = df['date'].dt.is_year_end.astype(int) # Extract the 'year' and 'weekofyear' components from the 'date' column df['year_weekofyear'] = df['date'].dt.year * 100 + df['date'].dt.weekofyear # create new coolumns to represent the cyclic nature of a year df['dayofyear'] = df['date'].dt.dayofyear df["sin(dayofyear)"] = np.sin(df["dayofyear"]) df["cos(dayofyear)"] = np.cos(df["dayofyear"]) df["is_weekend"] = np.where(df['dayofweek'] > 4, 1, 0) # Define the criteria for each season seasons = {'Winter': [12, 1, 2], 'Spring': [3, 4, 5], 'Summer': [6, 7, 8], 'Autumn': [9, 10, 11]} # Create the 'season' column based on the 'date' column df['season'] = df['month'].map({month: season for season, months in seasons.items() for month in months}) return df