import gradio as gr from transformers import pipeline from librosa import resample import numpy as np def transcribe(input_audio, model_id): pipe = pipeline( "automatic-speech-recognition", model=model_id, device="cpu" ) sr, speech = input_audio # Convert to mono if stereo if speech.ndim > 1: speech = speech.mean(axis=1) # Convert to float32 if needed if speech.dtype != "float32": speech = speech.astype(np.float32) # Resample if sampling rate is not 16kHz if sr!=16000: speech = resample(speech, orig_sr=sr, target_sr=16000) output = pipe(speech, chunk_length_s=30, stride_length_s=5)['text'] return output model_ids_list = [ "GetmanY1/wav2vec2-base-fi-150k-finetuned", "GetmanY1/wav2vec2-large-fi-150k-finetuned", "GetmanY1/wav2vec2-xlarge-fi-150k-finetuned" ] gradio_app = gr.Interface( fn=transcribe, inputs=[ gr.Audio(sources=["upload","microphone"]), gr.Dropdown( label="Model", value="GetmanY1/wav2vec2-large-fi-150k-finetuned", choices=model_ids_list ) ], outputs="text", title="Finnish Automatic Speech Recognition", description ="Choose a model from the list. Select the Base model for the fastest inference and the XLarge one for the most accurate results." ) if __name__ == "__main__": gradio_app.launch() # if __name__ == "__main__": # gradio_app.launch()