Spaces:
Running
Running
admin
commited on
Commit
·
404b247
1
Parent(s):
ab18e79
combine llms & deepseek
Browse files- .gitignore +2 -0
- app.py +10 -92
- deepseek.py +96 -0
- llms.py +165 -0
- requirements.txt +3 -2
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
*__pycache__*
|
2 |
+
test.*
|
app.py
CHANGED
@@ -1,96 +1,14 @@
|
|
1 |
-
import torch
|
2 |
import gradio as gr
|
3 |
-
from
|
4 |
-
from
|
5 |
-
|
6 |
-
|
7 |
-
MODEL_ID = "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B"
|
8 |
-
MODEL_NAME = MODEL_ID.split("/")[-1]
|
9 |
-
CONTEXT_LENGTH = 16000
|
10 |
-
DESCRIPTION = f"This is a HuggingFace deployment instance of {MODEL_NAME} model, if you have computing power, you can test by cloning to local or forking to an account with purchased GPU environment"
|
11 |
-
|
12 |
-
|
13 |
-
def predict(
|
14 |
-
message,
|
15 |
-
history,
|
16 |
-
system_prompt,
|
17 |
-
temperature,
|
18 |
-
max_new_tokens,
|
19 |
-
top_k,
|
20 |
-
repetition_penalty,
|
21 |
-
top_p,
|
22 |
-
):
|
23 |
-
# Format history with a given chat template
|
24 |
-
stop_tokens = ["<|endoftext|>", "<|im_end|>", "|im_end|"]
|
25 |
-
instruction = "<|im_start|>system\n" + system_prompt + "\n<|im_end|>\n"
|
26 |
-
for user, assistant in history:
|
27 |
-
instruction += f"<|im_start|>user\n{user}\n<|im_end|>\n<|im_start|>assistant\n{assistant}\n<|im_end|>\n"
|
28 |
-
|
29 |
-
instruction += f"<|im_start|>user\n{message}\n<|im_end|>\n<|im_start|>assistant\n"
|
30 |
-
try:
|
31 |
-
if device == torch.device("cpu"):
|
32 |
-
raise EnvironmentError(
|
33 |
-
"If you have computing power, you can test by cloning to local or forking to an account with purchased GPU environment"
|
34 |
-
)
|
35 |
-
|
36 |
-
streamer = TextIteratorStreamer(
|
37 |
-
tokenizer,
|
38 |
-
skip_prompt=True,
|
39 |
-
skip_special_tokens=True,
|
40 |
-
)
|
41 |
-
enc = tokenizer(instruction, return_tensors="pt", padding=True, truncation=True)
|
42 |
-
input_ids, attention_mask = enc.input_ids, enc.attention_mask
|
43 |
-
if input_ids.shape[1] > CONTEXT_LENGTH:
|
44 |
-
input_ids = input_ids[:, -CONTEXT_LENGTH:]
|
45 |
-
attention_mask = attention_mask[:, -CONTEXT_LENGTH:]
|
46 |
-
|
47 |
-
generate_kwargs = dict(
|
48 |
-
input_ids=input_ids.to(device),
|
49 |
-
attention_mask=attention_mask.to(device),
|
50 |
-
streamer=streamer,
|
51 |
-
do_sample=True,
|
52 |
-
temperature=temperature,
|
53 |
-
max_new_tokens=max_new_tokens,
|
54 |
-
top_k=top_k,
|
55 |
-
repetition_penalty=repetition_penalty,
|
56 |
-
top_p=top_p,
|
57 |
-
)
|
58 |
-
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
59 |
-
t.start()
|
60 |
-
|
61 |
-
except Exception as e:
|
62 |
-
streamer = f"{e}"
|
63 |
-
|
64 |
-
outputs = []
|
65 |
-
for new_token in streamer:
|
66 |
-
outputs.append(new_token)
|
67 |
-
if new_token in stop_tokens:
|
68 |
-
break
|
69 |
-
|
70 |
-
yield "".join(outputs)
|
71 |
-
|
72 |
|
73 |
if __name__ == "__main__":
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
|
|
|
|
|
|
78 |
|
79 |
-
|
80 |
-
gr.ChatInterface(
|
81 |
-
predict,
|
82 |
-
title=f"{MODEL_NAME} Deployment Instance",
|
83 |
-
description=DESCRIPTION,
|
84 |
-
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False),
|
85 |
-
additional_inputs=[
|
86 |
-
gr.Textbox(
|
87 |
-
"You are a useful assistant. first recognize user request and then reply carfuly and thinking",
|
88 |
-
label="System prompt",
|
89 |
-
),
|
90 |
-
gr.Slider(0, 1, 0.6, label="Temperature"),
|
91 |
-
gr.Slider(0, 32000, 10000, label="Max new tokens"),
|
92 |
-
gr.Slider(1, 80, 40, label="Top K sampling"),
|
93 |
-
gr.Slider(0, 2, 1.1, label="Repetition penalty"),
|
94 |
-
gr.Slider(0, 1, 0.95, label="Top P sampling"),
|
95 |
-
],
|
96 |
-
).queue().launch()
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from llms import LLM_APIs
|
3 |
+
from deepseek import DeepSeek_R1_Qwen_7B
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
if __name__ == "__main__":
|
6 |
+
with gr.Blocks() as demo:
|
7 |
+
gr.Markdown("# Large Language Model Deployment Example")
|
8 |
+
with gr.Tab("API"):
|
9 |
+
LLM_APIs()
|
10 |
+
|
11 |
+
with gr.Tab("Real DeepSeek R1 Qwen 7B"):
|
12 |
+
DeepSeek_R1_Qwen_7B()
|
13 |
|
14 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
deepseek.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import gradio as gr
|
3 |
+
from threading import Thread
|
4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
5 |
+
|
6 |
+
|
7 |
+
MODEL_ID = "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B"
|
8 |
+
MODEL_NAME = MODEL_ID.split("/")[-1]
|
9 |
+
CONTEXT_LENGTH = 16000
|
10 |
+
DESCRIPTION = f"This is a HuggingFace deployment instance of {MODEL_NAME} model, if you have computing power, you can test by cloning to local or forking to an account with purchased GPU environment"
|
11 |
+
|
12 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
+
if device == torch.device("cuda"):
|
14 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
15 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_ID, device_map="auto")
|
16 |
+
|
17 |
+
|
18 |
+
def predict(
|
19 |
+
message,
|
20 |
+
history,
|
21 |
+
system_prompt,
|
22 |
+
temperature,
|
23 |
+
max_new_tokens,
|
24 |
+
top_k,
|
25 |
+
repetition_penalty,
|
26 |
+
top_p,
|
27 |
+
):
|
28 |
+
# Format history with a given chat template
|
29 |
+
stop_tokens = ["<|endoftext|>", "<|im_end|>", "|im_end|"]
|
30 |
+
instruction = "<|im_start|>system\n" + system_prompt + "\n<|im_end|>\n"
|
31 |
+
for user, assistant in history:
|
32 |
+
instruction += f"<|im_start|>user\n{user}\n<|im_end|>\n<|im_start|>assistant\n{assistant}\n<|im_end|>\n"
|
33 |
+
|
34 |
+
instruction += f"<|im_start|>user\n{message}\n<|im_end|>\n<|im_start|>assistant\n"
|
35 |
+
try:
|
36 |
+
if device == torch.device("cpu"):
|
37 |
+
raise EnvironmentError(
|
38 |
+
"If you have computing power, you can test by cloning to local or forking to an account with purchased GPU environment"
|
39 |
+
)
|
40 |
+
|
41 |
+
streamer = TextIteratorStreamer(
|
42 |
+
tokenizer,
|
43 |
+
skip_prompt=True,
|
44 |
+
skip_special_tokens=True,
|
45 |
+
)
|
46 |
+
enc = tokenizer(instruction, return_tensors="pt", padding=True, truncation=True)
|
47 |
+
input_ids, attention_mask = enc.input_ids, enc.attention_mask
|
48 |
+
if input_ids.shape[1] > CONTEXT_LENGTH:
|
49 |
+
input_ids = input_ids[:, -CONTEXT_LENGTH:]
|
50 |
+
attention_mask = attention_mask[:, -CONTEXT_LENGTH:]
|
51 |
+
|
52 |
+
generate_kwargs = dict(
|
53 |
+
input_ids=input_ids.to(device),
|
54 |
+
attention_mask=attention_mask.to(device),
|
55 |
+
streamer=streamer,
|
56 |
+
do_sample=True,
|
57 |
+
temperature=temperature,
|
58 |
+
max_new_tokens=max_new_tokens,
|
59 |
+
top_k=top_k,
|
60 |
+
repetition_penalty=repetition_penalty,
|
61 |
+
top_p=top_p,
|
62 |
+
)
|
63 |
+
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
64 |
+
t.start()
|
65 |
+
|
66 |
+
except Exception as e:
|
67 |
+
streamer = f"{e}"
|
68 |
+
|
69 |
+
outputs = []
|
70 |
+
for new_token in streamer:
|
71 |
+
outputs.append(new_token)
|
72 |
+
if new_token in stop_tokens:
|
73 |
+
break
|
74 |
+
|
75 |
+
yield "".join(outputs)
|
76 |
+
|
77 |
+
|
78 |
+
def DeepSeek_R1_Qwen_7B():
|
79 |
+
# Create Gradio interface
|
80 |
+
return gr.ChatInterface(
|
81 |
+
predict,
|
82 |
+
title=f"{MODEL_NAME} Deployment Instance",
|
83 |
+
description=DESCRIPTION,
|
84 |
+
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False),
|
85 |
+
additional_inputs=[
|
86 |
+
gr.Textbox(
|
87 |
+
"You are a useful assistant. first recognize user request and then reply carfuly and thinking",
|
88 |
+
label="System prompt",
|
89 |
+
),
|
90 |
+
gr.Slider(0, 1, 0.6, label="Temperature"),
|
91 |
+
gr.Slider(0, 32000, 10000, label="Max new tokens"),
|
92 |
+
gr.Slider(1, 80, 40, label="Top K sampling"),
|
93 |
+
gr.Slider(0, 2, 1.1, label="Repetition penalty"),
|
94 |
+
gr.Slider(0, 1, 0.95, label="Top P sampling"),
|
95 |
+
],
|
96 |
+
).queue()
|
llms.py
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
from openai import OpenAI
|
4 |
+
|
5 |
+
|
6 |
+
def predict(
|
7 |
+
message,
|
8 |
+
history,
|
9 |
+
system_prompt,
|
10 |
+
model,
|
11 |
+
api_url,
|
12 |
+
api_key,
|
13 |
+
max_tk,
|
14 |
+
temp,
|
15 |
+
top_p,
|
16 |
+
):
|
17 |
+
if not api_key:
|
18 |
+
return "Please set valid api keys in settings first."
|
19 |
+
|
20 |
+
# Format history with a given chat template
|
21 |
+
msgs = [{"role": "system", "content": system_prompt}]
|
22 |
+
for user, assistant in history:
|
23 |
+
msgs.append({"role": "user", "content": user})
|
24 |
+
msgs.append({"role": "system", "content": assistant})
|
25 |
+
|
26 |
+
msgs.append({"role": "user", "content": message})
|
27 |
+
try:
|
28 |
+
client = OpenAI(api_key=api_key, base_url=api_url)
|
29 |
+
response = client.chat.completions.create(
|
30 |
+
model=model,
|
31 |
+
messages=msgs,
|
32 |
+
max_tokens=max_tk,
|
33 |
+
temperature=temp,
|
34 |
+
top_p=top_p,
|
35 |
+
stream=False,
|
36 |
+
).to_dict()["choices"][0]["message"]["content"]
|
37 |
+
|
38 |
+
except Exception as e:
|
39 |
+
response = f"{e}"
|
40 |
+
|
41 |
+
return response
|
42 |
+
|
43 |
+
|
44 |
+
def deepseek(
|
45 |
+
message,
|
46 |
+
history,
|
47 |
+
model,
|
48 |
+
api_key,
|
49 |
+
system_prompt,
|
50 |
+
max_tk,
|
51 |
+
temp,
|
52 |
+
top_p,
|
53 |
+
):
|
54 |
+
response = predict(
|
55 |
+
message,
|
56 |
+
history,
|
57 |
+
system_prompt,
|
58 |
+
model,
|
59 |
+
"https://api.deepseek.com",
|
60 |
+
api_key,
|
61 |
+
max_tk,
|
62 |
+
temp,
|
63 |
+
top_p,
|
64 |
+
)
|
65 |
+
outputs = []
|
66 |
+
for new_token in response:
|
67 |
+
outputs.append(new_token)
|
68 |
+
yield "".join(outputs)
|
69 |
+
|
70 |
+
|
71 |
+
def kimi(
|
72 |
+
message,
|
73 |
+
history,
|
74 |
+
model,
|
75 |
+
api_key,
|
76 |
+
system_prompt,
|
77 |
+
max_tk,
|
78 |
+
temp,
|
79 |
+
top_p,
|
80 |
+
):
|
81 |
+
response = predict(
|
82 |
+
message,
|
83 |
+
history,
|
84 |
+
system_prompt,
|
85 |
+
model,
|
86 |
+
"https://api.moonshot.cn/v1",
|
87 |
+
api_key,
|
88 |
+
max_tk,
|
89 |
+
temp,
|
90 |
+
top_p,
|
91 |
+
)
|
92 |
+
outputs = []
|
93 |
+
for new_token in response:
|
94 |
+
outputs.append(new_token)
|
95 |
+
yield "".join(outputs)
|
96 |
+
|
97 |
+
|
98 |
+
def LLM_APIs():
|
99 |
+
with gr.Blocks() as llms: # Create Gradio interface
|
100 |
+
gr.Markdown("# LLM API Aggregation Deployment")
|
101 |
+
with gr.Tab("DeepSeek"):
|
102 |
+
with gr.Accordion(label="⚙️ Settings", open=False) as ds_acc:
|
103 |
+
ds_model = gr.Dropdown(
|
104 |
+
choices=["deepseek-chat", "deepseek-reasoner"],
|
105 |
+
value="deepseek-chat",
|
106 |
+
label="Select a model",
|
107 |
+
)
|
108 |
+
ds_key = gr.Textbox(
|
109 |
+
os.getenv("ds_api_key"),
|
110 |
+
type="password",
|
111 |
+
label="API key",
|
112 |
+
)
|
113 |
+
ds_sys = gr.Textbox(
|
114 |
+
"You are a useful assistant. first recognize user request and then reply carfuly and thinking",
|
115 |
+
label="System prompt",
|
116 |
+
)
|
117 |
+
ds_maxtk = gr.Slider(0, 32000, 10000, label="Max new tokens")
|
118 |
+
ds_temp = gr.Slider(0, 1, 0.3, label="Temperature")
|
119 |
+
ds_topp = gr.Slider(0, 1, 0.95, label="Top P sampling")
|
120 |
+
|
121 |
+
gr.ChatInterface(
|
122 |
+
deepseek,
|
123 |
+
additional_inputs=[
|
124 |
+
ds_model,
|
125 |
+
ds_key,
|
126 |
+
ds_sys,
|
127 |
+
ds_maxtk,
|
128 |
+
ds_temp,
|
129 |
+
ds_topp,
|
130 |
+
],
|
131 |
+
)
|
132 |
+
|
133 |
+
with gr.Tab("Kimi"):
|
134 |
+
with gr.Accordion(label="⚙️ Settings", open=False) as kimi_acc:
|
135 |
+
kimi_model = gr.Dropdown(
|
136 |
+
choices=["moonshot-v1-8k", "moonshot-v1-32k", "moonshot-v1-128k"],
|
137 |
+
value="moonshot-v1-32k",
|
138 |
+
label="Select a model",
|
139 |
+
)
|
140 |
+
kimi_key = gr.Textbox(
|
141 |
+
os.getenv("kimi_api_key"),
|
142 |
+
type="password",
|
143 |
+
label="API key",
|
144 |
+
)
|
145 |
+
kimi_sys = gr.Textbox(
|
146 |
+
"You are a useful assistant. first recognize user request and then reply carfuly and thinking",
|
147 |
+
label="System prompt",
|
148 |
+
)
|
149 |
+
kimi_maxtk = gr.Slider(0, 32000, 10000, label="Max new tokens")
|
150 |
+
kimi_temp = gr.Slider(0, 1, 0.3, label="Temperature")
|
151 |
+
kimi_topp = gr.Slider(0, 1, 0.95, label="Top P sampling")
|
152 |
+
|
153 |
+
gr.ChatInterface(
|
154 |
+
kimi,
|
155 |
+
additional_inputs=[
|
156 |
+
kimi_model,
|
157 |
+
kimi_key,
|
158 |
+
kimi_sys,
|
159 |
+
kimi_maxtk,
|
160 |
+
kimi_temp,
|
161 |
+
kimi_topp,
|
162 |
+
],
|
163 |
+
)
|
164 |
+
|
165 |
+
return llms.queue()
|
requirements.txt
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
torch
|
2 |
-
|
|
|
3 |
transformers
|
4 |
-
|
|
|
1 |
torch
|
2 |
+
openai
|
3 |
+
accelerate
|
4 |
transformers
|
5 |
+
huggingface_hub==0.25.2
|