import streamlit as st #from transformers import AutoModelForCausalLM, AutoTokenizer #model_name = "deepseek-ai/DeepSeek-R1" #tokenizer = AutoTokenizer.from_pretrained(model_name) #model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True,quantization_config=None) #model_id = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B" #tokenizer = AutoTokenizer.from_pretrained(model_id) #model = AutoModelForCausalLM.from_pretrained(model_id) # Use a pipeline as a high-level helper from transformers import pipeline st.title("DeepSeek Chatbot") prompt = st.text_input("Enter your message:") if st.button("Run"): messages = [{"role": "user", "content": prompt},] pipe = pipeline("text-generation", model="deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B", trust_remote_code=True) response= pipe(messages) st.text_area("Long Text Box", response, height=1000)