from flask import Flask, request, jsonify, send_file from flask_cors import CORS import asyncio import tempfile import os from threading import RLock from huggingface_hub import InferenceClient from all_models import models # Importing models from all_models from io import BytesIO # For converting image to bytes myapp = Flask(__name__) CORS(myapp) # Enable CORS for all routes lock = RLock() HF_TOKEN = os.environ.get("HF_TOKEN") # Hugging Face token inference_timeout = 600 # Set timeout for inference @myapp.route('/') def home(): return "Welcome to the Image Background Remover!" # Function to dynamically load models from the "models" list def get_model_from_name(model_name): return model_name if model_name in models else None # Asynchronous function to perform inference async def infer(client, prompt, seed=1, timeout=inference_timeout, model="prompthero/openjourney-v4"): task = asyncio.create_task( asyncio.to_thread(client.text_to_image, prompt=prompt, seed=seed, model=model) ) await asyncio.sleep(0) try: result = await asyncio.wait_for(task, timeout=timeout) except (Exception, asyncio.TimeoutError) as e: print(e) print(f"Task timed out for model: {model}") if not task.done(): task.cancel() result = None if task.done() and result is not None: with lock: # Convert image result to bytes image_bytes = BytesIO() result.save(image_bytes, format='PNG') # Save the image to a BytesIO object image_bytes.seek(0) # Go to the start of the byte stream # Save the result image as a temporary file temp_image = tempfile.NamedTemporaryFile(suffix=".png", delete=False) with open(temp_image.name, "wb") as f: f.write(image_bytes.read()) # Write the bytes to the temp file return temp_image.name # Return the path to the saved image return None # Flask route for the API endpoint @myapp.route('/generate_api', methods=['POST']) def generate_api(): data = request.get_json() # Extract required fields from the request prompt = data.get('prompt', '') seed = data.get('seed', 1) model_name = data.get('model', 'prompthero/openjourney-v4') # Default model if not prompt: return jsonify({"error": "Prompt is required"}), 400 # Get the model from all_models model = get_model_from_name(model_name) if not model: return jsonify({"error": f"Model '{model_name}' not found in available models"}), 400 try: # Create a generic InferenceClient for the model client = InferenceClient(token=HF_TOKEN) # Call the async inference function result_path = asyncio.run(infer(client, prompt, seed, model=model)) if result_path: return send_file(result_path, mimetype='image/png') # Send back the generated image file else: return jsonify({"error": "Failed to generate image"}), 500 except Exception as e: print(f"Error in generate_api: {str(e)}") # Log the error return jsonify({"error": str(e)}), 500 # Add this block to make sure your app runs when called if __name__ == "__main__": myapp.run(host='0.0.0.0', port=7860) # Run directly if needed for testing