import gradio as gr from diffusers import DiffusionPipeline import dask from dask import delayed # Load model pipe = DiffusionPipeline.from_pretrained("kandinsky-community/kandinsky-2-1") def generate_image(prompt, num_inference_steps=50): """ Generate an image based on a text prompt using diffusion with optimizations. The number of inference steps is reduced for faster generation. """ # Reduce steps for faster processing image = pipe(prompt, num_inference_steps=num_inference_steps).images[0] return image # Dask-delayed function to utilize multi-core CPU processing @delayed def dask_generate(prompt): return generate_image(prompt) def parallel_generate(prompt): # Execute the generation using Dask to potentially improve processing speed image = dask.compute(dask_generate(prompt))[0] return image # Gradio interface iface = gr.Interface( fn=parallel_generate, inputs=gr.Textbox(label="Prompt", placeholder="Enter your prompt here"), outputs=gr.Image(type="pil"), title="CPU Optimized Image Generation", description="Enter a prompt to generate an image efficiently using CPU optimization." ) # Launch the Gradio app if __name__ == "__main__": iface.launch()