import gradio as gr from diffusers import DiffusionPipeline import os os.environ['HF_HOME'] = '/blabla/cache/' # Load the diffusion model pipe = DiffusionPipeline.from_pretrained("Yntec/epiCPhotoGasm") def generate_image(prompt): # Generate the image based on the prompt image = pipe(prompt).images[0] return image # Create a Gradio interface using the new component style iface = gr.Interface( fn=generate_image, inputs=gr.Textbox(label="Enter your prompt", placeholder="e.g., Astronaut in a jungle, cold color palette, muted colors, detailed, 8k"), outputs=gr.Image(type="pil", label="Generated Image"), title="Image Generation with SDXL-Lightning", description="Enter a prompt to generate an image using the SDXL-Lightning model." ) # Launch the Gradio interface if __name__ == "__main__": iface.launch()