Spaces:
Runtime error
Runtime error
File size: 4,927 Bytes
17e7222 89acd8a 17e7222 cabf479 c4f5222 43dd0bd 17e7222 cabf479 17e7222 c4f5222 43dd0bd c4f5222 17e7222 e3fa057 2f0d54b d229a8a aaafdf6 9a958bb b767311 17e7222 c8e5690 17e7222 08583e9 17e7222 9a958bb 17e7222 7d3ee9f 17e7222 7d3ee9f 17e7222 08583e9 17e7222 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
import sys
import time
import warnings
from pathlib import Path
# 配置hugface环境
from huggingface_hub import hf_hub_download
import gradio as gr
import os
import glob
import json
# os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
# torch.set_float32_matmul_precision("high")
def instruct_generate(
img_path: str = " ",
prompt: str = "What food do lamas eat?",
input: str = "",
max_new_tokens: int = 1024,
top_k: int = 200,
temperature: float = 0.8,
) -> None:
"""Generates a response based on a given instruction and an optional input.
This script will only work with checkpoints from the instruction-tuned LLaMA-Adapter model.
See `finetune_adapter.py`.
Args:
prompt: The prompt/instruction (Alpaca style).
adapter_path: Path to the checkpoint with trained adapter weights, which are the output of
`finetune_adapter.py`.
input: Optional input (Alpaca style).
pretrained_path: The path to the checkpoint with pretrained LLaMA weights.
tokenizer_path: The tokenizer path to load.
quantize: Whether to quantize the model and using which method:
``"llm.int8"``: LLM.int8() mode,
``"gptq.int4"``: GPTQ 4-bit mode.
max_new_tokens: The number of generation steps to take.
top_k: The number of top most probable tokens to consider in the sampling process.
temperature: A value controlling the randomness of the sampling process. Higher values result in more random
"""
# scene_name = os.path.basename(img_path).split(".")[0]
if input in input_value_2_real.keys():
input = input_value_2_real[input]
if "..." in input:
input = input.replace("...", "")
output = [prompt, input, max_new_tokens, top_k, temperature]
print(img_path)
return output
# 配置具体参数
example_path = "example.json"
# 1024如果不够, 调整为512
max_seq_len = 1024
max_batch_size = 1
with open(example_path, 'r') as f:
content = f.read()
example_dict = json.loads(content)
input_value_2_real = {}
for scene_id, scene_dict in example_dict.items():
input_value_2_real[scene_dict["input_display"]] = scene_dict["input"]
examples_img_list = glob.glob("caption_demo/*.png")
def create_instruct_demo():
with gr.Blocks() as instruct_demo:
with gr.Row():
with gr.Column():
scene_img = gr.Image(label='Scene', type='filepath', shape=(1024, 320), height=320, width=1024, interactive=False)
object_list = gr.Textbox(
lines=5, label="Object List", placeholder="Please click one from the examples below", interactive=False)
instruction = gr.Textbox(
lines=2, label="Instruction", placeholder="Please input the instruction. E.g.Please turn on the lamp")
max_len = gr.Slider(minimum=256, maximum=1024,
value=1024, label="Max length")
with gr.Accordion(label='Advanced options', open=False):
temp = gr.Slider(minimum=0, maximum=1,
value=0.8, label="Temperature")
top_k = gr.Slider(minimum=100, maximum=300,
value=200, label="Top k")
run_botton = gr.Button("Run")
with gr.Column():
outputs = gr.Textbox(lines=20, label="Output")
inputs = [scene_img, instruction, object_list, max_len, temp, top_k]
# inputs = [scene_img, instruction, object_list]
# 接下来设定具体的example格式
examples_img_list = glob.glob("caption_demo/*.png")
examples = []
for example_img_one in examples_img_list:
scene_name = os.path.basename(example_img_one).split(".")[0]
example_object_list = example_dict[scene_name]["input"]
example_instruction = example_dict[scene_name]["instruction"]
example_one = [example_img_one, example_instruction, example_object_list]
examples.append(example_one)
gr.Examples(
examples=examples,
inputs=inputs,
outputs=outputs,
fn=instruct_generate,
cache_examples=os.getenv('SYSTEM') == 'spaces'
)
# inputs = inputs + [max_len, temp, top_k]
run_botton.click(fn=instruct_generate, inputs=inputs, outputs=outputs)
return instruct_demo
# Please refer to our [arXiv paper](https://arxiv.org/abs/2303.16199) and [github](https://github.com/ZrrSkywalker/LLaMA-Adapter) for more details.
description = """
# TaPA
The official demo for **Embodied Task Planning with Large Language Models**.
"""
with gr.Blocks(css='style.css') as demo:
gr.Markdown(description)
with gr.TabItem("Instruction-Following"):
create_instruct_demo()
demo.queue(api_open=True, concurrency_count=1).launch()
|