import gradio as gr from transformers import TrOCRProcessor, VisionEncoderDecoderModel import requests from PIL import Image processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-printed") model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-printed") def process_image(image): # prepare image pixel_values = processor(image, return_tensors="pt").pixel_values # generate (no beam search) generated_ids = model.generate(pixel_values) # decode generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] return generated_text title = "Demo: TrOCR" #css = """.output_image, .input_image {height: 600px !important}""" iface = gr.Interface( fn=process_image, inputs=gr.inputs.Image(type="pil"), outputs=gr.outputs.Textbox(), title=title, ) iface.launch(debug=True)