Spaces:
Sleeping
Sleeping
import streamlit as st | |
import yfinance as yf | |
import numpy as np | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
import scipy.optimize as sco | |
def get_stock_data(tickers, start, end): | |
data = yf.download(tickers, start=start, end=end) | |
if data.empty: | |
st.error("Data saham tidak ditemukan. Periksa ticker atau rentang tanggal.") | |
return None | |
if 'Adj Close' in data.columns: | |
return data['Adj Close'] | |
elif 'Close' in data.columns: | |
st.warning("Menggunakan 'Close' karena 'Adj Close' tidak tersedia.") | |
return data['Close'] | |
else: | |
st.error("Data harga penutupan tidak ditemukan.") | |
return None | |
def calculate_returns(data): | |
log_returns = np.log(data / data.shift(1)) | |
return log_returns.mean() * 252, log_returns.cov() * 252 | |
def optimize_portfolio(returns, cov_matrix): | |
num_assets = len(returns) | |
def sharpe_ratio(weights): | |
portfolio_return = np.dot(weights, returns) | |
portfolio_volatility = np.sqrt(np.dot(weights.T, np.dot(cov_matrix, weights))) | |
return -portfolio_return / portfolio_volatility | |
constraints = ({'type': 'eq', 'fun': lambda x: np.sum(x) - 1}) | |
bounds = tuple((0, 1) for _ in range(num_assets)) | |
init_guess = num_assets * [1. / num_assets] | |
result = sco.minimize(sharpe_ratio, init_guess, method='SLSQP', bounds=bounds, constraints=constraints) | |
return result.x if result.success else None | |
def generate_efficient_frontier(returns, cov_matrix, num_portfolios=5000): | |
num_assets = len(returns) | |
results = np.zeros((3, num_portfolios)) | |
for i in range(num_portfolios): | |
weights = np.random.dirichlet(np.ones(num_assets), size=1)[0] | |
portfolio_return = np.dot(weights, returns) | |
portfolio_volatility = np.sqrt(np.dot(weights.T, np.dot(cov_matrix, weights))) | |
sharpe_ratio = portfolio_return / portfolio_volatility | |
results[0, i] = portfolio_return | |
results[1, i] = portfolio_volatility | |
results[2, i] = sharpe_ratio | |
return results | |
st.title("Analisis Portofolio Saham Optimal (Model Markowitz)") | |
st.markdown(""" | |
### Teori Markowitz | |
Model Markowitz, atau Modern Portfolio Theory (MPT), digunakan untuk membangun portofolio investasi optimal dengan memaksimalkan return untuk tingkat risiko tertentu. | |
Portofolio yang optimal ditemukan dengan menghitung kombinasi terbaik dari aset yang tersedia untuk meminimalkan risiko dan memaksimalkan return. | |
""") | |
def get_recommended_stocks(): | |
return "KLBF.JK, SIDO.JK, KAEF.JK, TLKM.JK, UNVR.JK" | |
def validate_tickers(tickers): | |
invalid_tickers = [t for t in tickers if yf.Ticker(t).history(period='1d').empty] | |
if invalid_tickers: | |
st.warning(f"Ticker tidak valid atau tidak memiliki data: {', '.join(invalid_tickers)}") | |
return False | |
return True | |
st.write("Rekomendasi Saham yang Bertahan Saat COVID-19:") | |
st.write(get_recommended_stocks()) | |
tickers_list = st.text_input("Masukkan ticker saham", "KLBF.JK, SIDO.JK, KAEF.JK").split(", ") | |
start_date = st.date_input("Pilih tanggal mulai", pd.to_datetime("2020-01-01")) | |
end_date = st.date_input("Pilih tanggal akhir", pd.to_datetime("2023-12-31")) | |
if st.button("Analisis Portofolio"): | |
if validate_tickers(tickers_list): | |
stock_data = get_stock_data(tickers_list, start_date, end_date) | |
if stock_data is not None: | |
mean_returns, cov_matrix = calculate_returns(stock_data) | |
optimal_weights = optimize_portfolio(mean_returns, cov_matrix) | |
st.subheader("Statistik Saham") | |
st.write(stock_data.describe()) | |
if optimal_weights is not None: | |
st.subheader("Bobot Portofolio Optimal") | |
portfolio_weights = {stock: weight for stock, weight in zip(stock_data.columns, optimal_weights)} | |
st.write(portfolio_weights) | |
# Pie Chart dengan filter saham dengan bobot signifikan | |
filtered_weights = {k: v for k, v in portfolio_weights.items() if v > 0.01} | |
fig, ax = plt.subplots() | |
ax.pie(filtered_weights.values(), labels=filtered_weights.keys(), autopct='%1.1f%%', startangle=140) | |
ax.axis('equal') | |
st.pyplot(fig) | |
# Efficient Frontier | |
results = generate_efficient_frontier(mean_returns, cov_matrix) | |
st.subheader("Efficient Frontier") | |
fig, ax = plt.subplots() | |
scatter = ax.scatter(results[1, :], results[0, :], c=results[2, :], cmap="viridis", marker='o') | |
ax.set_xlabel("Risiko (Standar Deviasi)") | |
ax.set_ylabel("Return Tahunan") | |
ax.set_title("Efficient Frontier") | |
fig.colorbar(scatter, label="Sharpe Ratio") | |
st.pyplot(fig) | |
st.markdown(""" | |
**Interpretasi:** | |
- Bobot dalam portofolio menunjukkan proporsi investasi pada masing-masing saham. | |
- Semakin besar bobot, semakin besar porsi dana yang dialokasikan ke saham tersebut. | |
- Grafik Efficient Frontier menunjukkan hubungan antara risiko dan return dari berbagai kombinasi portofolio. | |
- Portofolio yang berada di frontier efisien memberikan return terbaik untuk tingkat risiko tertentu. | |
""") | |
else: | |
st.error("Optimasi portofolio gagal. Coba dengan saham yang berbeda.") | |