import os import gradio as gr from transformers import pipeline from transformers import DetrForSegmentation, DetrConfig # Initialize the configuration for DetrForObjectDetection config = DetrConfig.from_pretrained("facebook/detr-resnet-50") # Create the model for object detection using the specified configuration model = DetrForSegmentation.from_pretrained("facebook/detr-resnet-50", config=config) # Updated function call results = processed_image(model, image, size={'longest_edge': 800}) def get_pipeline_prediction(pil_image): # first get the pipeline output given the pil image pipeline_output = od_pipe(pil_image) # Then Process the image using the pipeline output processed_image = render_results_in_image(pil_image, pipeline_output) return processed_image demo = gr.Interface( fn=get_pipeline_prediction, inputs=gr.Image(label="Input image", type="pil"), outputs=gr.Image(label="Output image with predicted instances", type="pil") ) demo.launch