File size: 7,898 Bytes
e3c0725
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
from types import SimpleNamespace

import numpy as np
import torch
from torch import nn
from transformers import BertTokenizerFast, BertForMaskedLM, BertTokenizer, BertModel
from tensor2tensor.data_generators import text_encoder
import torch.nn.functional as F


class LatinBERT(nn.Module):

    def __init__(self, bertPath, tokenizerPath):
        super().__init__()
        self.tokenizer = LatinTokenizer(tokenizerPath) #BertTokenizer.from_pretrained("bert-base-cased")
        self.model = BertModel.from_pretrained(bertPath)#.to("cuda")
        self.model.eval()

    @torch.no_grad()
    def __call__(self, sentences):
        if not isinstance(sentences, list):
            sentences = [sentences]

        tokens_ids, masks, transforms = self.tokenizer.tokenize(sentences, 512)
        #tokens_ids = tokens_ids.to("cuda")
        #tokens_ids = tokens_ids.squeeze()
        if tokens_ids.shape[-1] > 512:
            tokens_ids = torch.narrow(tokens_ids, -1, 0, 512)

        tokens_ids = tokens_ids.reshape((-1, tokens_ids.shape[-1]))
        outputs = self.model.forward(tokens_ids)
        embeddings = outputs.pooler_output
        embeddings = F.normalize(embeddings, p=2).cpu()
        return  embeddings

    @property
    def dim(self):
        return 768


class LatinTokenizer:
    def __init__(self, model):
        self.vocab = dict()
        self.reverseVocab = dict()
        self.encoder = text_encoder.SubwordTextEncoder(model)

        self.vocab["[PAD]"] = 0
        self.vocab["[UNK]"] = 1
        self.vocab["[CLS]"] = 2
        self.vocab["[SEP]"] = 3
        self.vocab["[MASK]"] = 4

        for key in self.encoder._subtoken_string_to_id:
            self.vocab[key] = self.encoder._subtoken_string_to_id[key] + 5
            self.reverseVocab[self.encoder._subtoken_string_to_id[key] + 5] = key

    def convert_tokens_to_ids(self, tokens):
        wp_tokens = list()
        for token in tokens:
            if token == "[PAD]":
                wp_tokens.append(0)
            elif token == "[UNK]":
                wp_tokens.append(1)
            elif token == "[CLS]":
                wp_tokens.append(2)
            elif token == "[SEP]":
                wp_tokens.append(3)
            elif token == "[MASK]":
                wp_tokens.append(4)
            else:
                wp_tokens.append(self.vocab[token])

        return wp_tokens

    def tokenize(self, sentences, max_batch):
        #print(len(sentences))
        maxLen=0
        for sentence in sentences:
            length=0
            for word in sentence:
                toks=self._tokenize(word)
                length+=len(toks)

            if length> maxLen:
                maxLen=length
        #print(maxLen)
        all_data=[]
        all_masks=[]
        all_labels=[]
        all_transforms=[]

        for sentence in sentences:
            tok_ids=[]
            input_mask=[]
            labels=[]
            transform=[]

            all_toks=[]
            n=0
            for idx, word in enumerate(sentence):
                toks=self._tokenize(word)
                all_toks.append(toks)
                n+=len(toks)

            cur=0
            for idx, word in enumerate(sentence):
                toks=all_toks[idx]
                ind=list(np.zeros(n))
                for j in range(cur,cur+len(toks)):
                    ind[j]=1./len(toks)
                cur+=len(toks)
                transform.append(ind)

                tok_ids.extend(self.convert_tokens_to_ids(toks))

                input_mask.extend(np.ones(len(toks)))
                labels.append(1)

            all_data.append(tok_ids)
            all_masks.append(input_mask)
            all_labels.append(labels)
            all_transforms.append(transform)

        lengths = np.array([len(l) for l in all_data])

        # Note sequence must be ordered from shortest to longest so current_batch will work
        ordering = np.argsort(lengths)

        ordered_data = [None for i in range(len(all_data))]
        ordered_masks = [None for i in range(len(all_data))]
        ordered_labels = [None for i in range(len(all_data))]
        ordered_transforms = [None for i in range(len(all_data))]


        for i, ind in enumerate(ordering):
            ordered_data[i] = all_data[ind]
            ordered_masks[i] = all_masks[ind]
            ordered_labels[i] = all_labels[ind]
            ordered_transforms[i] = all_transforms[ind]

        batched_data=[]
        batched_mask=[]
        batched_labels=[]
        batched_transforms=[]

        i=0
        current_batch=max_batch

        while i < len(ordered_data):

            batch_data=ordered_data[i:i+current_batch]
            batch_mask=ordered_masks[i:i+current_batch]
            batch_labels=ordered_labels[i:i+current_batch]
            batch_transforms=ordered_transforms[i:i+current_batch]

            max_len = max([len(sent) for sent in batch_data])
            max_label = max([len(label) for label in batch_labels])

            for j in range(len(batch_data)):

                blen=len(batch_data[j])
                blab=len(batch_labels[j])

                for k in range(blen, max_len):
                    batch_data[j].append(0)
                    batch_mask[j].append(0)
                    for z in range(len(batch_transforms[j])):
                        batch_transforms[j][z].append(0)

                for k in range(blab, max_label):
                    batch_labels[j].append(-100)

                for k in range(len(batch_transforms[j]), max_label):
                    batch_transforms[j].append(np.zeros(max_len))

            batched_data.append(batch_data)
            batched_mask.append(batch_mask)
            batched_labels.append(batch_labels)
            batched_transforms.append(batch_transforms)

            #bsize=torch.FloatTensor(batch_transforms).shape

            i+=current_batch

            # adjust batch size; sentences are ordered from shortest to longest so decrease as they get longer
            if max_len > 100:
                current_batch=12
            if max_len > 200:
                current_batch=6

        #print(len(batch_data), len(batch_mask), len(batch_transforms))
        return torch.LongTensor(batched_data).squeeze(), torch.FloatTensor(batched_mask).squeeze(), torch.FloatTensor(batched_transforms).squeeze()

    '''
    
    def _tokenize(self, text):
        if not isinstance(text, list):
            text = [text]

        outputs = []
        for sentence in text:
            tokens = sentence.split(" ")
            wp_tokens = []
            for token in tokens:
                if token in ["[PAD]", "[UNK]", "[CLS]", "[SEP]", "[MASK]"]:
                    wp_tokens.append(token)
                else:
                    wp_toks = self.encoder.encode(token)
                    for wp in wp_toks:
                        wp_tokens.append(self.reverseVocab[wp + 5])

            outputs.append(SimpleNamespace(
                tokens=wp_tokens,
                ids=torch.Tensor(self.convert_tokens_to_ids(wp_tokens))
            ))
        return outputs
    
    '''

    def _tokenize(self, text):
        tokens = text.split(" ")
        wp_tokens = []
        for token in tokens:

            if token in {"[PAD]", "[UNK]", "[CLS]", "[SEP]", "[MASK]"}:
                wp_tokens.append(token)
            else:

                wp_toks = self.encoder.encode(token)

                for wp in wp_toks:
                    wp_tokens.append(self.reverseVocab[wp + 5])
        #print(wp_tokens)
        return wp_tokens

def main():
    model = LatinBERT("../../latinBert/latin_bert/models/latin_bert", tokenizerPath="./tokenizer/latin.subword.encoder")

    sents = ["arma virumque cano", "arma gravi numero violentaque bella parabam"]


    output = model(sents)
    print("end", output.shape)

if __name__ == "__main__":
    main()