File size: 5,574 Bytes
e3c0725
 
 
 
 
 
 
 
 
 
 
1b2ffac
 
 
 
 
 
 
16c2f8d
e8f4770
5eb421a
 
ab7e6ea
e3c0725
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b2ffac
e3c0725
 
 
 
 
 
 
1b2ffac
 
 
e3c0725
 
 
1b2ffac
e3c0725
 
 
 
 
1b2ffac
e3c0725
 
1b2ffac
 
e3c0725
 
 
 
 
 
 
 
 
 
 
 
 
e8f4770
e3c0725
 
 
 
 
 
 
 
 
 
 
 
e8f4770
1b2ffac
e3c0725
 
9a78960
e3c0725
 
 
 
 
1b2ffac
 
e3c0725
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169


import os

import numpy as np
import streamlit as st
from elasticsearch import Elasticsearch

from embedders.LatinBERT import LatinBERT
from embedders.labse import LaBSE


if 'models' not in st.session_state:
    st.session_state['models'] = dict(
        LaBSE=LaBSE(),
        LatinBERT=LatinBERT(bertPath="./embedders/latin_bert/latin_bert", tokenizerPath="./embedders/tokenizer/latin.subword.encoder")
    )

verify_certs=True

host = os.environ["ELASTIC_HOST"]
user_pass = os.environ["ELASTIC_AUTH"].split(":")
es = Elasticsearch(host, basic_auth=user_pass, verify_certs=verify_certs)


def searchCloseSentence(document, startNumber, numCloseSentence=3):

    queryPrevious = {
        "bool": {
            "must": [{
                "term": {
                    "document": document
                }
            }, {
                "range": {
                    "number": {
                        "gte": startNumber - numCloseSentence,
                        "lt": startNumber,
                    }
                }
            }
            ]
        }
    }

    queryNext = {
        "bool": {
            "must": [{
                "term": {
                    "document": document
                }
            }, {
                "range": {
                    "number": {
                        "lte": startNumber+3,
                        "gt": startNumber,
                    }
                }
            }
            ]
        }
    }

    previous = es.search(
                        index="sentences",
                        query=queryPrevious
                    )
    nexts = es.search(
                        index="sentences",
                        query=queryNext
                    )
    previous_hits = sorted(previous["hits"]["hits"], key=lambda e: e["_source"]["number"])
    previous_context = "".join([r["_source"]["sentence"] for r in previous_hits])

    subsequent_hits = sorted(nexts["hits"]["hits"], key=lambda e: e["_source"]["number"])
    subsequent_context = "".join([r["_source"]["sentence"] for r in subsequent_hits])

    document_name_results = es.search(
        index="documents",
        query={
            "bool": {
                "must": [{
                    "term": {
                        "id": document
                    }
                }
                ]
            }
        }
    )

    document_name_data = document_name_results["hits"]["hits"][0]["_source"]
    document_name = f"{document_name_data['title']} - {document_name_data['author']}"

    return document_name, previous_context, subsequent_context

def prepareResults(results):
    results = results['hits']['hits']

    #string_results = []
    for sentence in results:
        text = sentence['_source']['sentence']
        score = sentence['_score']
        document = sentence['_source']['document']
        number = sentence['_source']['number']
        document_name, previous_context, subsequent_context = searchCloseSentence(document, number, 3)
        string_result = f"#### {document_name} (score: {score:.2f})\n{previous_context} **{text}** {subsequent_context}"
        #string_results.append(string_result)
        results_placeholder.markdown(string_result)
    #return string_results
def search():
    if query == "":
        return
    results_placeholder.markdown(f"Searching with {model_name} query={query}")
    status_indicator.write(f"Computing query embeddings...")

    query_vector = None
    embeddingType = None
    if model_name in ["LaBSE", "LatinBERT"]:
        query_vector = st.session_state['models'][model_name](query)[0, :].numpy().tolist()
        embeddingType = "labse_embedding" if model_name == "LaBSE" else "latinBERT_embedding"
    elif model_name in ["LaBSE-LatinBERT-Mean","LaBSE-LatinBERT-CONCAT"]:
        query_vector_labse = st.session_state['models']['LaBSE'](query)[0, :].numpy().tolist()
        query_vector_latinBERT = st.session_state['models']['LatinBERT'](query)[0, :].numpy().tolist()

        if model_name == "LaBSE-LatinBERT-Mean":
            query_vector = np.mean([query_vector_labse, query_vector_latinBERT], axis=0).tolist()
            embeddingType = "mean_embedding"
        elif model_name == "LaBSE-LatinBERT-CONCAT":
            query_vector = query_vector_latinBERT + query_vector_labse
            embeddingType = "concat_embedding"


    script = {
        "source": f"cosineSimilarity(params.query_vector, '{embeddingType}') + 1.0",
        "params": {"query_vector": query_vector}
    }
    status_indicator.write(f"Preparing the script for search...")
    results = es.search(
        index='sentences',
        query={
            "script_score": {
                "query": {"match_all": {}},
                "script": script

            }

        },
        size=limit
    )
    status_indicator.write(f"Prettifying the results ...")
    prepareResults(results)

st.header("Serica Intelligent Search")
st.write("This is a fork of this repo(https://huggingface.co/spaces/galatolo/serica-intelligent-search)")
st.write("Perform an intelligent search using a Sentence Embedding Transformer model on the SERICA database")
model_name = st.selectbox("Model", ["LaBSE", "LatinBERT", "LaBSE-LatinBERT-Mean", "LaBSE-LatinBERT-CONCAT"])
limit = st.number_input("Number of results (sentences) ", 25)
query = st.text_input("Query", value="")
status_indicator = st.empty()

do_search = st.button("Search")
results_placeholder = st.container()

if do_search:
    search()
    #do_search(model_name, query, limit, results_placeholder, status_indicator)