import gradio as gr from models.blip_vqa import blip_vqa import torch from torchvision import transforms from torchvision.transforms.functional import InterpolationMode device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') image_size = 480 transform = transforms.Compose([ transforms.Resize((image_size,image_size),interpolation=InterpolationMode.BICUBIC), transforms.ToTensor(), transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)) ]) model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth' model = blip_vqa(pretrained=model_url, image_size=image_size, vit='base') model.eval() model = model.to(device) def pool_alarm(raw_image): question = 'there is someone in the pool?' image = transform(raw_image).unsqueeze(0).to(device) with torch.no_grad(): answer = model(image, question, train=False, inference='generate') return 'answer: ' + answer[0] input = gr.inputs.Image(type='pil') output = gr.outputs.Textbox() examples = ['alarm.jpeg', 'alarm1.jpeg', 'walk.jpeg'] title = "use blip" description = "" intf = gr.Interface(fn=pool_alarm, inputs=input, outputs=output, examples=examples).launch()