Spaces:
Runtime error
Runtime error
import logging | |
import pathlib | |
import gradio as gr | |
import pandas as pd | |
from gt4sd.algorithms.generation.hugging_face import ( | |
HuggingFaceCTRLGenerator, | |
HuggingFaceGenerationAlgorithm, | |
HuggingFaceGPT2Generator, | |
HuggingFaceTransfoXLGenerator, | |
HuggingFaceOpenAIGPTGenerator, | |
HuggingFaceXLMGenerator, | |
HuggingFaceXLNetGenerator, | |
) | |
from gt4sd.algorithms.registry import ApplicationsRegistry | |
logger = logging.getLogger(__name__) | |
logger.addHandler(logging.NullHandler()) | |
MODEL_FN = { | |
"HuggingFaceCTRLGenerator": HuggingFaceCTRLGenerator, | |
"HuggingFaceGPT2Generator": HuggingFaceGPT2Generator, | |
"HuggingFaceTransfoXLGenerator": HuggingFaceTransfoXLGenerator, | |
"HuggingFaceOpenAIGPTGenerator": HuggingFaceOpenAIGPTGenerator, | |
"HuggingFaceXLMGenerator": HuggingFaceXLMGenerator, | |
"HuggingFaceXLNetGenerator": HuggingFaceXLNetGenerator, | |
} | |
def run_inference( | |
model_type: str, | |
prompt: str, | |
length: float, | |
temperature: float, | |
prefix: str, | |
k: float, | |
p: float, | |
repetition_penalty: float, | |
): | |
model = model_type.split("_")[0] | |
version = model_type.split("_")[1] | |
if model not in MODEL_FN.keys(): | |
raise ValueError(f"Model type {model} not supported") | |
config = MODEL_FN[model]( | |
algorithm_version=version, | |
prompt=prompt, | |
length=length, | |
temperature=temperature, | |
repetition_penalty=repetition_penalty, | |
k=k, | |
p=p, | |
prefix=prefix, | |
) | |
model = HuggingFaceGenerationAlgorithm(config) | |
text = list(model.sample(1))[0] | |
return text | |
if __name__ == "__main__": | |
# Preparation (retrieve all available algorithms) | |
all_algos = ApplicationsRegistry.list_available() | |
algos = [ | |
x["algorithm_application"] + "_" + x["algorithm_version"] | |
for x in list(filter(lambda x: "HuggingFace" in x["algorithm_name"], all_algos)) | |
] | |
# Load metadata | |
metadata_root = pathlib.Path(__file__).parent.joinpath("model_cards") | |
examples = pd.read_csv(metadata_root.joinpath("examples.csv"), header=None).fillna( | |
"" | |
) | |
print("Examples: ", examples.values.tolist()) | |
with open(metadata_root.joinpath("article.md"), "r") as f: | |
article = f.read() | |
with open(metadata_root.joinpath("description.md"), "r") as f: | |
description = f.read() | |
demo = gr.Interface( | |
fn=run_inference, | |
title="HuggingFace language models", | |
inputs=[ | |
gr.Dropdown( | |
algos, | |
label="Language model", | |
value="HuggingFaceGPT2Generator_gpt2", | |
), | |
gr.Textbox( | |
label="Text prompt", | |
placeholder="I'm a stochastic parrot.", | |
lines=1, | |
), | |
gr.Slider(minimum=5, maximum=100, value=20, label="Maximal length", step=1), | |
gr.Slider( | |
minimum=0.6, maximum=1.5, value=1.1, label="Decoding temperature" | |
), | |
gr.Textbox( | |
label="Prefix", placeholder="Some prefix (before the prompt)", lines=1 | |
), | |
gr.Slider(minimum=2, maximum=500, value=50, label="Top-k", step=1), | |
gr.Slider(minimum=0.5, maximum=1, value=1.0, label="Decoding-p", step=1), | |
gr.Slider(minimum=0.5, maximum=5, value=1.0, label="Repetition penalty"), | |
], | |
outputs=gr.Textbox(label="Output"), | |
article=article, | |
description=description, | |
examples=examples.values.tolist(), | |
) | |
demo.launch(debug=True, show_error=True) | |