Spaces:
Runtime error
Runtime error
File size: 18,046 Bytes
7962ed0 40e6e04 7962ed0 40e6e04 d8c6a57 40e6e04 7962ed0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 |
import logging
from omegaconf import OmegaConf
import copy
import spacy
import torch
from torch import nn
from torchvision import transforms as T
from torchvision.transforms.functional import InterpolationMode
from transformers import LlamaTokenizer, BertTokenizer, BitsAndBytesConfig
import sys
sys.path.append("./")
from model.knwl_model import KnwlModel, KnwlEncoder
from model.utils import drop_sequence_mask, cat_pad, disabled_train, download_cached_file
from model.eva_vit import create_eva_vit_g
from model.qformer import BertConfig, BertLMHeadModel
from model.llama import LlamaForCausalLM, LlamaConfig
class GPTK(nn.Module):
def __init__(
self,
img_size=224,
drop_path_rate=0,
use_grad_checkpoint=True,
vit_precision="fp16",
num_query_token=32,
llm_model="",
prompt="",
max_txt_len=128,
max_output_txt_len=256,
d_knwl=768,
topk={},
pc=0.1,
pt=0.1,
pv=0.1
):
super().__init__()
self.topk = {k: v for k, v in topk.items() if v > 0}
self.pc = pc
self.pt = pt
self.pv = pv
# LLM
self.llm_tokenizer = LlamaTokenizer.from_pretrained(llm_model, use_fast=False, truncation_side="left")
llm_config = LlamaConfig.from_pretrained(llm_model)
llm_config.gradient_checkpointing = True
llm_config.use_cache = True
quantization_config = BitsAndBytesConfig(
load_in_8bit=True,
llm_int8_threshold=6.0,
llm_int8_has_fp16_weight=False,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type='nf4'
)
self.llm_model = LlamaForCausalLM.from_pretrained(
llm_model, config=llm_config, torch_dtype=torch.float16, quantization_config=quantization_config
)
self.llm_tokenizer.add_special_tokens({'pad_token': '[PAD]'})
self.llm_tokenizer.add_special_tokens({'bos_token': '</s>'})
self.llm_tokenizer.add_special_tokens({'eos_token': '</s>'})
self.llm_tokenizer.add_special_tokens({'unk_token': '</s>'})
self.llm_model.resize_token_embeddings(len(self.llm_tokenizer))
for name, param in self.llm_model.named_parameters():
param.requires_grad = False
# ViT image encoder
self.visual_encoder, self.ln_vision = self.init_vision_encoder(
img_size, drop_path_rate, use_grad_checkpoint, vit_precision
)
for name, param in self.visual_encoder.named_parameters():
param.requires_grad = False
self.visual_encoder = self.visual_encoder.eval()
self.visual_encoder.train = disabled_train
logging.info("freeze vision encoder")
# Q-former
self.tokenizer = self.init_tokenizer(truncation_side="left")
self.Qformer, self.query_tokens = self.init_Qformer(
num_query_token, self.visual_encoder.num_features
)
self.Qformer.resize_token_embeddings(len(self.tokenizer))
self.Qformer.cls = None
self.llm_proj = nn.Linear(
self.Qformer.config.hidden_size, self.llm_model.config.hidden_size
)
# Knowledge modules
if len(self.topk) > 0: # all added modules must contain "knwl" in their names
self.knwl_encoder = KnwlEncoder(self.visual_encoder.num_features)
self.knwl_query = copy.deepcopy(self.query_tokens)
for k in self.topk.keys():
m = KnwlModel(d_knwl=d_knwl, d_out=self.knwl_encoder.d, pt=pt)
setattr(self, f"knwl_{k}", m)
self.max_txt_len = max_txt_len
self.max_output_txt_len = max_output_txt_len
self.prompt = prompt
prompt_tokens = self.llm_tokenizer(self.prompt, return_tensors="pt")
self.prompt_length = prompt_tokens.attention_mask.sum(1)
@classmethod
def init_tokenizer(cls, truncation_side="right"):
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased", truncation_side=truncation_side)
tokenizer.add_special_tokens({"bos_token": "[DEC]"})
return tokenizer
@classmethod
def init_Qformer(cls, num_query_token, vision_width, cross_attention_freq=2):
encoder_config = BertConfig.from_pretrained("bert-base-uncased")
encoder_config.encoder_width = vision_width
# insert cross-attention layer every other block
encoder_config.add_cross_attention = True
encoder_config.cross_attention_freq = cross_attention_freq
encoder_config.query_length = num_query_token
logging.disable(logging.CRITICAL)
Qformer = BertLMHeadModel.from_pretrained(
"bert-base-uncased", config=encoder_config
)
logging.disable(logging.NOTSET)
query_tokens = nn.Parameter(
torch.zeros(1, num_query_token, encoder_config.hidden_size)
)
query_tokens.data.normal_(mean=0.0, std=encoder_config.initializer_range)
return Qformer, query_tokens
@classmethod
def init_vision_encoder(cls, img_size, drop_path_rate, use_grad_checkpoint, precision):
visual_encoder = create_eva_vit_g(
img_size, drop_path_rate, use_grad_checkpoint, precision
)
ln_vision = nn.LayerNorm(visual_encoder.num_features)
return visual_encoder, ln_vision
def concat_text_input_output(self, input_ids, input_atts, output_ids, output_atts):
input_part_targets_len = []
llm_tokens = {"input_ids": [], "attention_mask": []}
for i in range(input_ids.size(0)):
this_input_ones = input_atts[i].sum()
input_part_targets_len.append(this_input_ones)
llm_tokens['input_ids'].append(
torch.cat([
input_ids[i][:this_input_ones],
output_ids[i][1:],
input_ids[i][this_input_ones:]
])
)
llm_tokens['attention_mask'].append(
torch.cat([
input_atts[i][:this_input_ones],
output_atts[i][1:],
input_atts[i][this_input_ones:]
])
)
llm_tokens['input_ids'] = torch.stack(llm_tokens['input_ids'])
llm_tokens['attention_mask'] = torch.stack(llm_tokens['attention_mask'])
return llm_tokens, input_part_targets_len
def forward_qformer(self, image, knowledge, prompt):
views = []
# knowledge embeds
if len(self.topk) > 0 and knowledge is not None:
embeds, masks = [], []
for k in knowledge.keys():
embeds_k, masks_k = getattr(self, f"knwl_{k}")(knowledge[k])
embeds.append(embeds_k)
masks.append(masks_k)
embeds = cat_pad(embeds, cat_dim=0, pad_dim=1)
masks = cat_pad(masks, cat_dim=0, pad_dim=1)
embeds = self.knwl_encoder(
inputs_embeds=embeds, attention_mask=masks
)
embeds = nn.functional.dropout(
embeds, p=self.pc, training=self.training
)
N, (S, d) = len(image), embeds.shape[1:]
embeds = embeds.reshape(-1, N, S, d)
embeds = embeds.transpose(0, 1).flatten(1, 2)
masks = masks.reshape(-1, N, S)
masks = masks.transpose(0, 1).flatten(1, 2)
views.append((embeds, masks, self.knwl_query))
# image embeds
embeds = self.ln_vision(self.visual_encoder(image))
embeds = nn.functional.dropout(
embeds, p=self.pc, training=self.training
)
masks = drop_sequence_mask(
*embeds.shape[:2], image.device, self.pt, self.training
)
views.append((embeds, masks, self.query_tokens))
# Qformer forward
text_Qformer = self.tokenizer(
prompt,
padding='longest',
truncation=True,
max_length=self.max_txt_len,
return_tensors="pt",
).to(image.device)
qfm_embeds, qfm_masks = [], []
for embeds, masks, query in views:
query = query.expand(image.shape[0], -1, -1)
query_atts = torch.ones(query.size()[:-1], dtype=torch.long).to(embeds.device)
Qformer_atts = torch.cat([query_atts, text_Qformer.attention_mask], dim=1)
query_output = self.Qformer.bert(
text_Qformer.input_ids,
attention_mask=Qformer_atts,
query_embeds=query,
encoder_hidden_states=embeds,
encoder_attention_mask=masks,
return_dict=True,
)
embeds = self.llm_proj(query_output.last_hidden_state[:, :query.size(1),:])
masks = torch.ones(embeds.size()[:-1], dtype=torch.long).to(image.device)
qfm_embeds.append(embeds)
qfm_masks.append(masks)
# drop views
if self.training:
view_masks = drop_sequence_mask(len(image), len(qfm_embeds), image.device, self.pv)
qfm_masks = [m * view_masks[:, i:(i+1)] for i, m in enumerate(qfm_masks)]
llm_embeds = torch.cat(qfm_embeds, dim=1)
llm_masks = torch.cat(qfm_masks, dim=1)
return llm_embeds, llm_masks
def forward(self, samples):
inputs_llm, atts_llm = self.forward_qformer(
samples["image"], samples["knowledge"], samples["prompt"]
)
device = inputs_llm.device
self.llm_tokenizer.padding_side = "right"
self.llm_tokenizer.truncation_side = 'left'
text_input_tokens = self.llm_tokenizer(
samples['prompt'],
return_tensors="pt",
padding="longest",
truncation=True,
max_length=self.max_txt_len,
).to(device)
self.llm_tokenizer.truncation_side = 'right'
text_output_tokens = self.llm_tokenizer(
[t + self.llm_tokenizer.eos_token for t in samples['output']],
return_tensors="pt",
padding="longest",
truncation=True,
max_length=self.max_output_txt_len,
).to(device)
llm_tokens, input_part_targets_len = self.concat_text_input_output(
text_input_tokens.input_ids,
text_input_tokens.attention_mask,
text_output_tokens.input_ids,
text_output_tokens.attention_mask,
)
# do not apply loss to the padding
targets = llm_tokens['input_ids'].masked_fill(
llm_tokens['input_ids'] == self.llm_tokenizer.pad_token_id, -100
)
# do not apply loss to the text input (i.e., instruction)
for i, l in enumerate(input_part_targets_len):
targets[i][:l] = -100
# do not apply loss to the query tokens
empty_targets = (
torch.ones(atts_llm.size(), dtype=torch.long).to(device).fill_(-100)
)
targets = torch.cat([empty_targets, targets], dim=1)
inputs_embeds = self.llm_model.get_input_embeddings()(llm_tokens['input_ids'])
inputs_embeds = torch.cat([inputs_llm, inputs_embeds], dim=1)
attention_mask = torch.cat([atts_llm, llm_tokens['attention_mask']], dim=1)
outputs = self.llm_model(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
return_dict=True,
labels=targets,
)
loss = outputs.loss
return loss
@torch.no_grad()
def generate(
self,
samples,
use_nucleus_sampling=False,
num_beams=5,
max_length=256,
min_length=1,
top_p=0.9,
repetition_penalty=1.5,
length_penalty=1,
num_captions=1,
temperature=1,
streamer=None,
auto_cast=False
):
prompt = samples["prompt"] if "prompt" in samples.keys() else self.prompt
if isinstance(prompt, str):
prompt = [prompt] * samples["image"].size(0)
else:
assert len(prompt) == samples["image"].size(0), \
"The number of prompts must be equal to the batch size."
with torch.cuda.amp.autocast(auto_cast):
inputs_llm, atts_llm = self.forward_qformer(
samples["image"], samples["knowledge"], prompt
)
device = inputs_llm.device
self.llm_tokenizer.padding_side = "left"
llm_tokens = self.llm_tokenizer(
prompt,
padding="longest",
return_tensors="pt"
).to(device)
inputs_embeds = self.llm_model.get_input_embeddings()(llm_tokens.input_ids)
inputs_embeds = torch.cat([inputs_llm, inputs_embeds], dim=1)
attention_mask = torch.cat([atts_llm, llm_tokens.attention_mask], dim=1)
outputs = self.llm_model.generate(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
do_sample=use_nucleus_sampling,
top_p=top_p,
temperature=temperature,
num_beams=num_beams,
max_length=max_length,
min_length=min_length,
repetition_penalty=repetition_penalty,
length_penalty=length_penalty,
num_return_sequences=num_captions,
streamer=streamer
)
if streamer is None:
outputs[outputs == 0] = 2 # convert output id 0 to 2 (eos_token_id)
output_text = self.llm_tokenizer.batch_decode(outputs, skip_special_tokens=True)
output_text = [text.strip() for text in output_text]
return output_text
else:
return outputs
@torch.no_grad()
def predict_answers(
self,
samples,
num_beams=5,
max_len=10,
min_len=1,
length_penalty=0
):
output_text = self.generate(
samples,
num_beams=num_beams,
max_length=max_len,
min_length=min_len,
length_penalty=length_penalty
)
output_text = self._lemmatize(output_text)
return output_text
def _lemmatize(self, answers):
lemmatizer = spacy.load("en_core_web_sm")
def apply(answer):
doc = lemmatizer(answer)
words = []
for token in doc:
if token.pos_ in ["NOUN", "VERB"]:
words.append(token.lemma_)
else:
words.append(token.text)
answer = " ".join(words)
return answer
return [apply(answer) for answer in answers]
@classmethod
def from_config(cls, cfg):
llm_model = cfg.get("llm_model")
num_query_token = cfg.get("num_query_token", 32)
img_size = cfg.get("image_size", 224)
drop_path_rate = cfg.get("drop_path_rate", 0)
use_grad_checkpoint = cfg.get("use_grad_checkpoint", True)
vit_precision = cfg.get("vit_precision", "fp16")
prompt = cfg.get("prompt", "")
max_txt_len = cfg.get("max_txt_len", 128)
max_output_txt_len = cfg.get("max_output_txt_len", 256)
d_knwl = cfg.get("d_knwl", 768)
topk = cfg.get("topk", {})
pc = cfg.get("pc", 0.1)
pt = cfg.get("pt", 0.1)
pv = cfg.get("pv", 0.4)
model = cls(
img_size=img_size,
drop_path_rate=drop_path_rate,
use_grad_checkpoint=use_grad_checkpoint,
vit_precision=vit_precision,
num_query_token=num_query_token,
llm_model=llm_model,
prompt=prompt,
max_txt_len=max_txt_len,
max_output_txt_len=max_output_txt_len,
d_knwl=d_knwl,
topk=topk,
pc=pc,
pt=pt,
pv=pv
)
pretrain_path = cfg.get("pretrained", None)
assert pretrain_path is not None, "Pretrain_path is None."
cached_file = download_cached_file(
pretrain_path, check_hash=False, progress=True
)
checkpoint = torch.load(cached_file, map_location="cpu")
state_dict = checkpoint["model"]
model.load_state_dict(state_dict, strict=False)
logging.info("load checkpoint from %s" % pretrain_path)
return model
def get_gptk_image_transform(model_type: str = "gptk-7b"):
assert model_type in ("gptk-7b", "gptk-13b")
model_config = OmegaConf.load(f"model/{model_type}.yaml")
size = model_config.get("image_size", 224)
normalizer = T.Normalize(
mean=(0.48145466, 0.4578275, 0.40821073),
std=(0.26862954, 0.26130258, 0.27577711)
)
trans_train = T.Compose([
T.RandomResizedCrop(
size=(size, size), scale=(0.5, 1.0),
interpolation=InterpolationMode.BICUBIC,
),
T.RandomHorizontalFlip(),
T.ToTensor(),
normalizer
])
trans_val = T.Compose([
T.Resize(
size=(size, size), interpolation=InterpolationMode.BICUBIC,
),
T.RandomHorizontalFlip(),
T.ToTensor(),
normalizer
])
return trans_train, trans_val
def get_gptk_model(
model_type: str = "gptk-7b",
d_knwl: int = 768,
topk: dict = {"whole": 0, "five": 0, "nine": 0},
pc: float = 0.1, pt: float = 0.1, pv: float = 0.4
):
assert model_type in ("gptk-7b", "gptk-13b")
model_config = OmegaConf.load(f"model/{model_type}.yaml")
model_config.pv = pv
model_config.pt = pt
model_config.pc = pc
model_config.topk = {k: v for k, v in topk.items() if v > 0}
model_config.d_knwl = d_knwl
model = GPTK.from_config(model_config)
if sum(topk.values()) > 0:
model.knwl_query.data.copy_(model.query_tokens.data.clone().detach())
return model
|