File size: 18,046 Bytes
7962ed0
 
 
 
 
 
 
 
 
40e6e04
7962ed0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40e6e04
d8c6a57
40e6e04
 
 
 
 
 
 
 
 
7962ed0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
import logging
from omegaconf import OmegaConf
import copy

import spacy
import torch
from torch import nn
from torchvision import transforms as T
from torchvision.transforms.functional import InterpolationMode
from transformers import LlamaTokenizer, BertTokenizer, BitsAndBytesConfig

import sys
sys.path.append("./")
from model.knwl_model import KnwlModel, KnwlEncoder
from model.utils import drop_sequence_mask, cat_pad, disabled_train, download_cached_file
from model.eva_vit import create_eva_vit_g
from model.qformer import BertConfig, BertLMHeadModel
from model.llama import LlamaForCausalLM, LlamaConfig


class GPTK(nn.Module):
    def __init__(
        self,
        img_size=224,
        drop_path_rate=0,
        use_grad_checkpoint=True,
        vit_precision="fp16",
        num_query_token=32,
        llm_model="",
        prompt="",
        max_txt_len=128,
        max_output_txt_len=256,
        d_knwl=768,
        topk={},
        pc=0.1,
        pt=0.1,
        pv=0.1
    ):
        super().__init__()
        
        self.topk = {k: v for k, v in topk.items() if v > 0}
        self.pc = pc
        self.pt = pt
        self.pv = pv

        # LLM
        self.llm_tokenizer = LlamaTokenizer.from_pretrained(llm_model, use_fast=False, truncation_side="left")
        llm_config = LlamaConfig.from_pretrained(llm_model)
        llm_config.gradient_checkpointing = True
        llm_config.use_cache = True
        quantization_config = BitsAndBytesConfig(
            load_in_8bit=True,
            llm_int8_threshold=6.0,
            llm_int8_has_fp16_weight=False,
            bnb_4bit_compute_dtype=torch.float16,
            bnb_4bit_use_double_quant=True,
            bnb_4bit_quant_type='nf4'
        )
        self.llm_model = LlamaForCausalLM.from_pretrained(
            llm_model, config=llm_config, torch_dtype=torch.float16, quantization_config=quantization_config
        )
        self.llm_tokenizer.add_special_tokens({'pad_token': '[PAD]'})
        self.llm_tokenizer.add_special_tokens({'bos_token': '</s>'})
        self.llm_tokenizer.add_special_tokens({'eos_token': '</s>'})
        self.llm_tokenizer.add_special_tokens({'unk_token': '</s>'})
        self.llm_model.resize_token_embeddings(len(self.llm_tokenizer))
        for name, param in self.llm_model.named_parameters():
            param.requires_grad = False

        # ViT image encoder
        self.visual_encoder, self.ln_vision = self.init_vision_encoder(
            img_size, drop_path_rate, use_grad_checkpoint, vit_precision
        )
        for name, param in self.visual_encoder.named_parameters():
            param.requires_grad = False
        self.visual_encoder = self.visual_encoder.eval()
        self.visual_encoder.train = disabled_train
        logging.info("freeze vision encoder")

        # Q-former
        self.tokenizer = self.init_tokenizer(truncation_side="left")
        self.Qformer, self.query_tokens = self.init_Qformer(
            num_query_token, self.visual_encoder.num_features
        )
        self.Qformer.resize_token_embeddings(len(self.tokenizer))
        self.Qformer.cls = None
        self.llm_proj = nn.Linear(
            self.Qformer.config.hidden_size, self.llm_model.config.hidden_size
        )

        # Knowledge modules
        if len(self.topk) > 0:  # all added modules must contain "knwl" in their names
            self.knwl_encoder = KnwlEncoder(self.visual_encoder.num_features)
            self.knwl_query = copy.deepcopy(self.query_tokens)
            for k in self.topk.keys():
                m = KnwlModel(d_knwl=d_knwl, d_out=self.knwl_encoder.d, pt=pt)
                setattr(self, f"knwl_{k}", m)

        self.max_txt_len = max_txt_len
        self.max_output_txt_len = max_output_txt_len
        self.prompt = prompt
        prompt_tokens = self.llm_tokenizer(self.prompt, return_tensors="pt")
        self.prompt_length = prompt_tokens.attention_mask.sum(1)

    @classmethod
    def init_tokenizer(cls, truncation_side="right"):
        tokenizer = BertTokenizer.from_pretrained("bert-base-uncased", truncation_side=truncation_side)
        tokenizer.add_special_tokens({"bos_token": "[DEC]"})
        return tokenizer

    @classmethod
    def init_Qformer(cls, num_query_token, vision_width, cross_attention_freq=2):
        encoder_config = BertConfig.from_pretrained("bert-base-uncased")
        encoder_config.encoder_width = vision_width
        # insert cross-attention layer every other block
        encoder_config.add_cross_attention = True
        encoder_config.cross_attention_freq = cross_attention_freq
        encoder_config.query_length = num_query_token
        
        logging.disable(logging.CRITICAL)
        Qformer = BertLMHeadModel.from_pretrained(
            "bert-base-uncased", config=encoder_config
        )
        logging.disable(logging.NOTSET)
        
        query_tokens = nn.Parameter(
            torch.zeros(1, num_query_token, encoder_config.hidden_size)
        )
        query_tokens.data.normal_(mean=0.0, std=encoder_config.initializer_range)
        return Qformer, query_tokens

    @classmethod
    def init_vision_encoder(cls, img_size, drop_path_rate, use_grad_checkpoint, precision):
        visual_encoder = create_eva_vit_g(
            img_size, drop_path_rate, use_grad_checkpoint, precision
        )
        ln_vision = nn.LayerNorm(visual_encoder.num_features)

        return visual_encoder, ln_vision

    def concat_text_input_output(self, input_ids, input_atts, output_ids, output_atts):
        input_part_targets_len = []
        llm_tokens = {"input_ids": [], "attention_mask": []}
        for i in range(input_ids.size(0)):
            this_input_ones = input_atts[i].sum()
            input_part_targets_len.append(this_input_ones)
            llm_tokens['input_ids'].append(
                torch.cat([
                    input_ids[i][:this_input_ones],
                    output_ids[i][1:],
                    input_ids[i][this_input_ones:]
                ])
            )
            llm_tokens['attention_mask'].append(
                torch.cat([
                    input_atts[i][:this_input_ones],
                    output_atts[i][1:],
                    input_atts[i][this_input_ones:]
                ])
            )
        llm_tokens['input_ids'] = torch.stack(llm_tokens['input_ids'])
        llm_tokens['attention_mask'] = torch.stack(llm_tokens['attention_mask'])
        
        return llm_tokens, input_part_targets_len
    
    def forward_qformer(self, image, knowledge, prompt):
        views = []
        
        # knowledge embeds
        if len(self.topk) > 0 and knowledge is not None:
            embeds, masks = [], []
            for k in knowledge.keys():
                embeds_k, masks_k = getattr(self, f"knwl_{k}")(knowledge[k])
                embeds.append(embeds_k)
                masks.append(masks_k)
            embeds = cat_pad(embeds, cat_dim=0, pad_dim=1)
            masks = cat_pad(masks, cat_dim=0, pad_dim=1)

            embeds = self.knwl_encoder(
                inputs_embeds=embeds, attention_mask=masks
            )
            embeds = nn.functional.dropout(
                embeds, p=self.pc, training=self.training
            )

            N, (S, d) = len(image), embeds.shape[1:]
            embeds = embeds.reshape(-1, N, S, d)
            embeds = embeds.transpose(0, 1).flatten(1, 2)
            masks = masks.reshape(-1, N, S)
            masks = masks.transpose(0, 1).flatten(1, 2)
            views.append((embeds, masks, self.knwl_query))

        # image embeds
        embeds = self.ln_vision(self.visual_encoder(image))
        embeds = nn.functional.dropout(
            embeds, p=self.pc, training=self.training
        )
        masks = drop_sequence_mask(
            *embeds.shape[:2], image.device, self.pt, self.training
        )
        views.append((embeds, masks, self.query_tokens))

        # Qformer forward
        text_Qformer = self.tokenizer(
            prompt,
            padding='longest',
            truncation=True,
            max_length=self.max_txt_len,
            return_tensors="pt",
        ).to(image.device)
        
        qfm_embeds, qfm_masks = [], []
        for embeds, masks, query in views:
            query = query.expand(image.shape[0], -1, -1)
            query_atts = torch.ones(query.size()[:-1], dtype=torch.long).to(embeds.device)
            Qformer_atts = torch.cat([query_atts, text_Qformer.attention_mask], dim=1)

            query_output = self.Qformer.bert(
                text_Qformer.input_ids,
                attention_mask=Qformer_atts,
                query_embeds=query,
                encoder_hidden_states=embeds,
                encoder_attention_mask=masks,
                return_dict=True,
            )
            embeds = self.llm_proj(query_output.last_hidden_state[:, :query.size(1),:])
            masks = torch.ones(embeds.size()[:-1], dtype=torch.long).to(image.device)
            qfm_embeds.append(embeds)
            qfm_masks.append(masks)

        # drop views
        if self.training:
            view_masks = drop_sequence_mask(len(image), len(qfm_embeds), image.device, self.pv)
            qfm_masks = [m * view_masks[:, i:(i+1)] for i, m in enumerate(qfm_masks)]
        llm_embeds = torch.cat(qfm_embeds, dim=1)
        llm_masks = torch.cat(qfm_masks, dim=1)

        return llm_embeds, llm_masks

    def forward(self, samples):
        inputs_llm, atts_llm = self.forward_qformer(
            samples["image"], samples["knowledge"], samples["prompt"]
        )
        device = inputs_llm.device

        self.llm_tokenizer.padding_side = "right"
        self.llm_tokenizer.truncation_side = 'left'
        text_input_tokens = self.llm_tokenizer(
            samples['prompt'],
            return_tensors="pt",
            padding="longest",
            truncation=True,
            max_length=self.max_txt_len,
        ).to(device)

        self.llm_tokenizer.truncation_side = 'right'
        text_output_tokens = self.llm_tokenizer(
            [t + self.llm_tokenizer.eos_token for t in samples['output']],
            return_tensors="pt",
            padding="longest",
            truncation=True,
            max_length=self.max_output_txt_len,
        ).to(device)

        llm_tokens, input_part_targets_len = self.concat_text_input_output(
            text_input_tokens.input_ids,
            text_input_tokens.attention_mask,
            text_output_tokens.input_ids,
            text_output_tokens.attention_mask,
        )

        # do not apply loss to the padding
        targets = llm_tokens['input_ids'].masked_fill(
            llm_tokens['input_ids'] == self.llm_tokenizer.pad_token_id, -100
        )

        # do not apply loss to the text input (i.e., instruction)
        for i, l in enumerate(input_part_targets_len):
            targets[i][:l] = -100

        # do not apply loss to the query tokens
        empty_targets = (
            torch.ones(atts_llm.size(), dtype=torch.long).to(device).fill_(-100)
        )
        targets = torch.cat([empty_targets, targets], dim=1)

        inputs_embeds = self.llm_model.get_input_embeddings()(llm_tokens['input_ids'])
        inputs_embeds = torch.cat([inputs_llm, inputs_embeds], dim=1)
        attention_mask = torch.cat([atts_llm, llm_tokens['attention_mask']], dim=1)

        outputs = self.llm_model(
            inputs_embeds=inputs_embeds,
            attention_mask=attention_mask,
            return_dict=True,
            labels=targets,
        )
        loss = outputs.loss

        return loss

    @torch.no_grad()
    def generate(
        self,
        samples,
        use_nucleus_sampling=False,
        num_beams=5,
        max_length=256,
        min_length=1,
        top_p=0.9,
        repetition_penalty=1.5,
        length_penalty=1,
        num_captions=1,
        temperature=1,
        streamer=None,
        auto_cast=False
    ):
        prompt = samples["prompt"] if "prompt" in samples.keys() else self.prompt
        if isinstance(prompt, str):
            prompt = [prompt] * samples["image"].size(0)
        else:
            assert len(prompt) == samples["image"].size(0), \
                "The number of prompts must be equal to the batch size."

        with torch.cuda.amp.autocast(auto_cast):
            inputs_llm, atts_llm = self.forward_qformer(
                samples["image"], samples["knowledge"], prompt
            )
            device = inputs_llm.device
        
            self.llm_tokenizer.padding_side = "left"
            llm_tokens = self.llm_tokenizer(
                prompt,
                padding="longest",
                return_tensors="pt"
            ).to(device)

            inputs_embeds = self.llm_model.get_input_embeddings()(llm_tokens.input_ids)
            inputs_embeds = torch.cat([inputs_llm, inputs_embeds], dim=1)
            attention_mask = torch.cat([atts_llm, llm_tokens.attention_mask], dim=1)

            outputs = self.llm_model.generate(
                inputs_embeds=inputs_embeds,
                attention_mask=attention_mask,
                do_sample=use_nucleus_sampling,
                top_p=top_p,
                temperature=temperature,
                num_beams=num_beams,
                max_length=max_length,
                min_length=min_length,
                repetition_penalty=repetition_penalty,
                length_penalty=length_penalty,
                num_return_sequences=num_captions,
                streamer=streamer
            )

        if streamer is None:
            outputs[outputs == 0] = 2 # convert output id 0 to 2 (eos_token_id)
            output_text = self.llm_tokenizer.batch_decode(outputs, skip_special_tokens=True)
            output_text = [text.strip() for text in output_text]

            return output_text
        else:
            return outputs


    @torch.no_grad()
    def predict_answers(
        self,
        samples,
        num_beams=5,
        max_len=10,
        min_len=1,
        length_penalty=0
    ):
        output_text = self.generate(
            samples,
            num_beams=num_beams,
            max_length=max_len,
            min_length=min_len,
            length_penalty=length_penalty
        )
        output_text = self._lemmatize(output_text)

        return output_text
    
    def _lemmatize(self, answers):
        lemmatizer = spacy.load("en_core_web_sm")
        def apply(answer):
            doc = lemmatizer(answer)

            words = []
            for token in doc:
                if token.pos_ in ["NOUN", "VERB"]:
                    words.append(token.lemma_)
                else:
                    words.append(token.text)
            answer = " ".join(words)

            return answer

        return [apply(answer) for answer in answers]

    @classmethod
    def from_config(cls, cfg):
        llm_model = cfg.get("llm_model")
        num_query_token = cfg.get("num_query_token", 32)

        img_size = cfg.get("image_size", 224)
        drop_path_rate = cfg.get("drop_path_rate", 0)
        use_grad_checkpoint = cfg.get("use_grad_checkpoint", True)
        vit_precision = cfg.get("vit_precision", "fp16")

        prompt = cfg.get("prompt", "")
        max_txt_len = cfg.get("max_txt_len", 128)
        max_output_txt_len = cfg.get("max_output_txt_len", 256)

        d_knwl = cfg.get("d_knwl", 768)
        topk = cfg.get("topk", {})
        pc = cfg.get("pc", 0.1)
        pt = cfg.get("pt", 0.1)
        pv = cfg.get("pv", 0.4)

        model = cls(
            img_size=img_size,
            drop_path_rate=drop_path_rate,
            use_grad_checkpoint=use_grad_checkpoint,
            vit_precision=vit_precision,
            num_query_token=num_query_token,
            llm_model=llm_model,
            prompt=prompt,
            max_txt_len=max_txt_len,
            max_output_txt_len=max_output_txt_len,
            d_knwl=d_knwl,
            topk=topk,
            pc=pc,
            pt=pt,
            pv=pv
        )

        pretrain_path = cfg.get("pretrained", None)
        assert pretrain_path is not None, "Pretrain_path is None."
        cached_file = download_cached_file(
            pretrain_path, check_hash=False, progress=True
        )
        checkpoint = torch.load(cached_file, map_location="cpu")
        state_dict = checkpoint["model"]
        model.load_state_dict(state_dict, strict=False)
        logging.info("load checkpoint from %s" % pretrain_path)
        
        return model


def get_gptk_image_transform(model_type: str = "gptk-7b"):
    assert model_type in ("gptk-7b", "gptk-13b")
    model_config = OmegaConf.load(f"model/{model_type}.yaml")
    size = model_config.get("image_size", 224)

    normalizer = T.Normalize(
        mean=(0.48145466, 0.4578275, 0.40821073),
        std=(0.26862954, 0.26130258, 0.27577711)
    )
    trans_train = T.Compose([
        T.RandomResizedCrop(
            size=(size, size), scale=(0.5, 1.0),
            interpolation=InterpolationMode.BICUBIC,
        ),
        T.RandomHorizontalFlip(),
        T.ToTensor(),
        normalizer
    ])

    trans_val = T.Compose([
        T.Resize(
            size=(size, size), interpolation=InterpolationMode.BICUBIC,
        ),
        T.RandomHorizontalFlip(),
        T.ToTensor(),
        normalizer
    ])

    return trans_train, trans_val


def get_gptk_model(
        model_type: str = "gptk-7b",
        d_knwl: int = 768,
        topk: dict = {"whole": 0, "five": 0, "nine": 0},
        pc: float = 0.1, pt: float = 0.1, pv: float = 0.4
    ):
    assert model_type in ("gptk-7b", "gptk-13b")

    model_config = OmegaConf.load(f"model/{model_type}.yaml")
    model_config.pv = pv
    model_config.pt = pt
    model_config.pc = pc
    model_config.topk = {k: v for k, v in topk.items() if v > 0}
    model_config.d_knwl = d_knwl

    model = GPTK.from_config(model_config)
    if sum(topk.values()) > 0:
        model.knwl_query.data.copy_(model.query_tokens.data.clone().detach())

    return model