File size: 10,917 Bytes
16481d9
 
 
 
35bb627
7711cae
 
 
35bb627
 
 
 
 
16481d9
 
 
 
 
35bb627
16481d9
 
 
 
 
 
 
 
 
 
 
 
7711cae
69683d3
 
 
 
 
 
 
 
 
 
 
 
 
7711cae
69683d3
 
7711cae
69683d3
 
 
 
7711cae
 
16481d9
 
 
 
 
 
35bb627
16481d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35bb627
16481d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35bb627
16481d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35bb627
16481d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35bb627
 
 
 
16481d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35bb627
 
 
 
 
 
 
 
 
16481d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7711cae
 
16481d9
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import streamlit as st
from gradio_client import Client
import time
import concurrent.futures
import os
from PIL import Image
import io
import requests

# Get token from environment variable
HF_TOKEN = os.getenv('ArtToken')
if not HF_TOKEN:
    raise ValueError("Please set the 'ArtToken' environment variable with your Hugging Face token")

class ModelGenerator:
    @staticmethod
    def generate_midjourney(prompt):
        try:
            client = Client("mukaist/Midjourney", hf_token=HF_TOKEN)
            result = client.predict(
                prompt=prompt,
                negative_prompt="(deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime:1.4), text, close up, cropped, out of frame, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck",
                use_negative_prompt=True,
                style="2560 x 1440",
                seed=0,
                width=1024,
                height=1024,
                guidance_scale=6,
                randomize_seed=True,
                api_name="/run"
            )
            
            # Handle different types of results
            if isinstance(result, tuple):
                # If it's a tuple, the first element might be the image gallery
                if len(result) > 0 and isinstance(result[0], list):
                    image_data = result[0][0]  # Get first image from gallery
                    if isinstance(image_data, dict) and 'image' in image_data:
                        return ("Midjourney", image_data['image'])
                    elif isinstance(image_data, (str, bytes)):
                        return ("Midjourney", image_data)
                else:
                    return ("Midjourney", result[0])  # Try first element of tuple
            elif isinstance(result, list) and len(result) > 0:
                # If it's a list, get the first element
                image_data = result[0]
                if isinstance(image_data, dict) and 'image' in image_data:
                    return ("Midjourney", image_data['image'])
                else:
                    return ("Midjourney", image_data)
            elif isinstance(result, str):
                # If it's a direct string (URL or path)
                return ("Midjourney", result)
            else:
                return ("Midjourney", f"Error: Unexpected result format: {type(result)}")
        except Exception as e:
            return ("Midjourney", f"Error: {str(e)}")

    @staticmethod
    def generate_stable_cascade(prompt):
        try:
            client = Client("multimodalart/stable-cascade", hf_token=HF_TOKEN)
            result = client.predict(
                prompt=prompt,
                negative_prompt=prompt,
                seed=0,
                width=1024,
                height=1024,
                prior_num_inference_steps=20,
                prior_guidance_scale=4,
                decoder_num_inference_steps=10,
                decoder_guidance_scale=0,
                num_images_per_prompt=1,
                api_name="/run"
            )
            return ("Stable Cascade", result)
        except Exception as e:
            return ("Stable Cascade", f"Error: {str(e)}")

    @staticmethod
    def generate_stable_diffusion_3(prompt):
        try:
            client = Client("stabilityai/stable-diffusion-3-medium", hf_token=HF_TOKEN)
            result = client.predict(
                prompt=prompt,
                negative_prompt=prompt,
                seed=0,
                randomize_seed=True,
                width=1024,
                height=1024,
                guidance_scale=5,
                num_inference_steps=28,
                api_name="/infer"
            )
            return ("SD 3 Medium", result)
        except Exception as e:
            return ("SD 3 Medium", f"Error: {str(e)}")

    @staticmethod
    def generate_stable_diffusion_35(prompt):
        try:
            client = Client("stabilityai/stable-diffusion-3.5-large", hf_token=HF_TOKEN)
            result = client.predict(
                prompt=prompt,
                negative_prompt=prompt,
                seed=0,
                randomize_seed=True,
                width=1024,
                height=1024,
                guidance_scale=4.5,
                num_inference_steps=40,
                api_name="/infer"
            )
            return ("SD 3.5 Large", result)
        except Exception as e:
            return ("SD 3.5 Large", f"Error: {str(e)}")

    @staticmethod
    def generate_playground_v2_5(prompt):
        try:
            client = Client("https://playgroundai-playground-v2-5.hf.space/--replicas/ji5gy/", hf_token=HF_TOKEN)
            result = client.predict(
                prompt,
                prompt,  # negative prompt
                True,    # use negative prompt
                0,      # seed
                1024,   # width
                1024,   # height
                7.5,    # guidance scale
                True,   # randomize seed
                api_name="/run"
            )
            # Result is a tuple (gallery, seed), we want just the first image from gallery
            if result and isinstance(result, tuple) and result[0]:
                return ("Playground v2.5", result[0][0]['image'])
            return ("Playground v2.5", "Error: No image generated")
        except Exception as e:
            return ("Playground v2.5", f"Error: {str(e)}")

def generate_images(prompt, selected_models):
    results = []
    with concurrent.futures.ThreadPoolExecutor() as executor:
        futures = []
        model_map = {
            "Midjourney": ModelGenerator.generate_midjourney,
            "Stable Cascade": ModelGenerator.generate_stable_cascade,
            "SD 3 Medium": ModelGenerator.generate_stable_diffusion_3,
            "SD 3.5 Large": ModelGenerator.generate_stable_diffusion_35,
            "Playground v2.5": ModelGenerator.generate_playground_v2_5
        }
        
        for model in selected_models:
            if model in model_map:
                futures.append(executor.submit(model_map[model], prompt))
        
        for future in concurrent.futures.as_completed(futures):
            results.append(future.result())
    
    return results

def handle_prompt_click(prompt_text, key):
    if not HF_TOKEN:
        st.error("Environment variable 'ArtToken' is not set!")
        return
        
    st.session_state[f'selected_prompt_{key}'] = prompt_text
    
    selected_models = st.session_state.get('selected_models', [])
    
    if not selected_models:
        st.warning("Please select at least one model from the sidebar!")
        return

    with st.spinner('Generating artwork...'):
        results = generate_images(prompt_text, selected_models)
        st.session_state[f'generated_images_{key}'] = results
        st.success("Artwork generated successfully!")

def main():
    st.title("๐ŸŽจ Multi-Model Art Generator")

    with st.sidebar:
        st.header("Configuration")
        
        # Show token status
        if HF_TOKEN:
            st.success("โœ“ ArtToken loaded from environment")
        else:
            st.error("โš  ArtToken not found in environment")
        
        st.markdown("---")
        st.header("Model Selection")
        st.session_state['selected_models'] = st.multiselect(
            "Choose AI Models",
            ["Midjourney", "Stable Cascade", "SD 3 Medium", "SD 3.5 Large", "Playground v2.5"],
            default=["Midjourney"]
        )
        
        st.markdown("---")
        st.markdown("### Selected Models:")
        for model in st.session_state['selected_models']:
            st.write(f"โœ“ {model}")
        
        st.markdown("---")
        st.markdown("### Model Information:")
        st.markdown("""
        - **Midjourney**: Best for artistic and creative imagery
        - **Stable Cascade**: New architecture with high detail
        - **SD 3 Medium**: Fast and efficient generation
        - **SD 3.5 Large**: Highest quality, slower generation
        - **Playground v2.5**: Advanced model with high customization
        """)

    st.markdown("### Select a prompt style to generate artwork:")

    prompt_emojis = {
        "AIart/AIArtistCommunity": "๐Ÿค–",
        "Black & White": "โšซโšช",
        "Black & Yellow": "โšซ๐Ÿ’›",
        "Blindfold": "๐Ÿ™ˆ",
        "Break": "๐Ÿ’”",
        "Broken": "๐Ÿ”จ",
        "Christmas Celebrations art": "๐ŸŽ„",
        "Colorful Art": "๐ŸŽจ",
        "Crimson art": "๐Ÿ”ด",
        "Eyes Art": "๐Ÿ‘๏ธ",
        "Going out with Style": "๐Ÿ’ƒ",
        "Hooded Girl": "๐Ÿงฅ",
        "Lips": "๐Ÿ‘„",
        "MAEKHLONG": "๐Ÿฎ",
        "Mermaid": "๐Ÿงœโ€โ™€๏ธ",
        "Morning Sunshine": "๐ŸŒ…",
        "Music Art": "๐ŸŽต",
        "Owl": "๐Ÿฆ‰",
        "Pink": "๐Ÿ’—",
        "Purple": "๐Ÿ’œ",
        "Rain": "๐ŸŒง๏ธ",
        "Red Moon": "๐ŸŒ‘",
        "Rose": "๐ŸŒน",
        "Snow": "โ„๏ธ",
        "Spacesuit Girl": "๐Ÿ‘ฉโ€๐Ÿš€",
        "Steampunk": "โš™๏ธ",
        "Succubus": "๐Ÿ˜ˆ",
        "Sunlight": "โ˜€๏ธ",
        "Weird art": "๐ŸŽญ",
        "White Hair": "๐Ÿ‘ฑโ€โ™€๏ธ",
        "Wings art": "๐Ÿ‘ผ",
        "Woman with Sword": "โš”๏ธ"
    }

    col1, col2, col3 = st.columns(3)
    
    for idx, (prompt, emoji) in enumerate(prompt_emojis.items()):
        full_prompt = f"QT {prompt}"
        col = [col1, col2, col3][idx % 3]
        
        with col:
            if st.button(f"{emoji} {prompt}", key=f"btn_{idx}"):
                handle_prompt_click(full_prompt, idx)

    st.markdown("---")
    st.markdown("### Generated Artwork:")
    
    for key in st.session_state:
        if key.startswith('selected_prompt_'):
            idx = key.split('_')[-1]
            images_key = f'generated_images_{idx}'
            
            if images_key in st.session_state:
                st.write("Prompt:", st.session_state[key])
                
                cols = st.columns(len(st.session_state[images_key]))
                
                for col, (model_name, result) in zip(cols, st.session_state[images_key]):
                    with col:
                        st.markdown(f"**{model_name}**")
                        if isinstance(result, str) and result.startswith("Error"):
                            st.error(result)
                        else:
                            # Updated to use use_container_width instead of use_column_width
                            st.image(result, use_container_width=True)

if __name__ == "__main__":
    main()