File size: 10,917 Bytes
16481d9 35bb627 7711cae 35bb627 16481d9 35bb627 16481d9 7711cae 69683d3 7711cae 69683d3 7711cae 69683d3 7711cae 16481d9 35bb627 16481d9 35bb627 16481d9 35bb627 16481d9 35bb627 16481d9 35bb627 16481d9 35bb627 16481d9 7711cae 16481d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
import streamlit as st
from gradio_client import Client
import time
import concurrent.futures
import os
from PIL import Image
import io
import requests
# Get token from environment variable
HF_TOKEN = os.getenv('ArtToken')
if not HF_TOKEN:
raise ValueError("Please set the 'ArtToken' environment variable with your Hugging Face token")
class ModelGenerator:
@staticmethod
def generate_midjourney(prompt):
try:
client = Client("mukaist/Midjourney", hf_token=HF_TOKEN)
result = client.predict(
prompt=prompt,
negative_prompt="(deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime:1.4), text, close up, cropped, out of frame, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck",
use_negative_prompt=True,
style="2560 x 1440",
seed=0,
width=1024,
height=1024,
guidance_scale=6,
randomize_seed=True,
api_name="/run"
)
# Handle different types of results
if isinstance(result, tuple):
# If it's a tuple, the first element might be the image gallery
if len(result) > 0 and isinstance(result[0], list):
image_data = result[0][0] # Get first image from gallery
if isinstance(image_data, dict) and 'image' in image_data:
return ("Midjourney", image_data['image'])
elif isinstance(image_data, (str, bytes)):
return ("Midjourney", image_data)
else:
return ("Midjourney", result[0]) # Try first element of tuple
elif isinstance(result, list) and len(result) > 0:
# If it's a list, get the first element
image_data = result[0]
if isinstance(image_data, dict) and 'image' in image_data:
return ("Midjourney", image_data['image'])
else:
return ("Midjourney", image_data)
elif isinstance(result, str):
# If it's a direct string (URL or path)
return ("Midjourney", result)
else:
return ("Midjourney", f"Error: Unexpected result format: {type(result)}")
except Exception as e:
return ("Midjourney", f"Error: {str(e)}")
@staticmethod
def generate_stable_cascade(prompt):
try:
client = Client("multimodalart/stable-cascade", hf_token=HF_TOKEN)
result = client.predict(
prompt=prompt,
negative_prompt=prompt,
seed=0,
width=1024,
height=1024,
prior_num_inference_steps=20,
prior_guidance_scale=4,
decoder_num_inference_steps=10,
decoder_guidance_scale=0,
num_images_per_prompt=1,
api_name="/run"
)
return ("Stable Cascade", result)
except Exception as e:
return ("Stable Cascade", f"Error: {str(e)}")
@staticmethod
def generate_stable_diffusion_3(prompt):
try:
client = Client("stabilityai/stable-diffusion-3-medium", hf_token=HF_TOKEN)
result = client.predict(
prompt=prompt,
negative_prompt=prompt,
seed=0,
randomize_seed=True,
width=1024,
height=1024,
guidance_scale=5,
num_inference_steps=28,
api_name="/infer"
)
return ("SD 3 Medium", result)
except Exception as e:
return ("SD 3 Medium", f"Error: {str(e)}")
@staticmethod
def generate_stable_diffusion_35(prompt):
try:
client = Client("stabilityai/stable-diffusion-3.5-large", hf_token=HF_TOKEN)
result = client.predict(
prompt=prompt,
negative_prompt=prompt,
seed=0,
randomize_seed=True,
width=1024,
height=1024,
guidance_scale=4.5,
num_inference_steps=40,
api_name="/infer"
)
return ("SD 3.5 Large", result)
except Exception as e:
return ("SD 3.5 Large", f"Error: {str(e)}")
@staticmethod
def generate_playground_v2_5(prompt):
try:
client = Client("https://playgroundai-playground-v2-5.hf.space/--replicas/ji5gy/", hf_token=HF_TOKEN)
result = client.predict(
prompt,
prompt, # negative prompt
True, # use negative prompt
0, # seed
1024, # width
1024, # height
7.5, # guidance scale
True, # randomize seed
api_name="/run"
)
# Result is a tuple (gallery, seed), we want just the first image from gallery
if result and isinstance(result, tuple) and result[0]:
return ("Playground v2.5", result[0][0]['image'])
return ("Playground v2.5", "Error: No image generated")
except Exception as e:
return ("Playground v2.5", f"Error: {str(e)}")
def generate_images(prompt, selected_models):
results = []
with concurrent.futures.ThreadPoolExecutor() as executor:
futures = []
model_map = {
"Midjourney": ModelGenerator.generate_midjourney,
"Stable Cascade": ModelGenerator.generate_stable_cascade,
"SD 3 Medium": ModelGenerator.generate_stable_diffusion_3,
"SD 3.5 Large": ModelGenerator.generate_stable_diffusion_35,
"Playground v2.5": ModelGenerator.generate_playground_v2_5
}
for model in selected_models:
if model in model_map:
futures.append(executor.submit(model_map[model], prompt))
for future in concurrent.futures.as_completed(futures):
results.append(future.result())
return results
def handle_prompt_click(prompt_text, key):
if not HF_TOKEN:
st.error("Environment variable 'ArtToken' is not set!")
return
st.session_state[f'selected_prompt_{key}'] = prompt_text
selected_models = st.session_state.get('selected_models', [])
if not selected_models:
st.warning("Please select at least one model from the sidebar!")
return
with st.spinner('Generating artwork...'):
results = generate_images(prompt_text, selected_models)
st.session_state[f'generated_images_{key}'] = results
st.success("Artwork generated successfully!")
def main():
st.title("๐จ Multi-Model Art Generator")
with st.sidebar:
st.header("Configuration")
# Show token status
if HF_TOKEN:
st.success("โ ArtToken loaded from environment")
else:
st.error("โ ArtToken not found in environment")
st.markdown("---")
st.header("Model Selection")
st.session_state['selected_models'] = st.multiselect(
"Choose AI Models",
["Midjourney", "Stable Cascade", "SD 3 Medium", "SD 3.5 Large", "Playground v2.5"],
default=["Midjourney"]
)
st.markdown("---")
st.markdown("### Selected Models:")
for model in st.session_state['selected_models']:
st.write(f"โ {model}")
st.markdown("---")
st.markdown("### Model Information:")
st.markdown("""
- **Midjourney**: Best for artistic and creative imagery
- **Stable Cascade**: New architecture with high detail
- **SD 3 Medium**: Fast and efficient generation
- **SD 3.5 Large**: Highest quality, slower generation
- **Playground v2.5**: Advanced model with high customization
""")
st.markdown("### Select a prompt style to generate artwork:")
prompt_emojis = {
"AIart/AIArtistCommunity": "๐ค",
"Black & White": "โซโช",
"Black & Yellow": "โซ๐",
"Blindfold": "๐",
"Break": "๐",
"Broken": "๐จ",
"Christmas Celebrations art": "๐",
"Colorful Art": "๐จ",
"Crimson art": "๐ด",
"Eyes Art": "๐๏ธ",
"Going out with Style": "๐",
"Hooded Girl": "๐งฅ",
"Lips": "๐",
"MAEKHLONG": "๐ฎ",
"Mermaid": "๐งโโ๏ธ",
"Morning Sunshine": "๐
",
"Music Art": "๐ต",
"Owl": "๐ฆ",
"Pink": "๐",
"Purple": "๐",
"Rain": "๐ง๏ธ",
"Red Moon": "๐",
"Rose": "๐น",
"Snow": "โ๏ธ",
"Spacesuit Girl": "๐ฉโ๐",
"Steampunk": "โ๏ธ",
"Succubus": "๐",
"Sunlight": "โ๏ธ",
"Weird art": "๐ญ",
"White Hair": "๐ฑโโ๏ธ",
"Wings art": "๐ผ",
"Woman with Sword": "โ๏ธ"
}
col1, col2, col3 = st.columns(3)
for idx, (prompt, emoji) in enumerate(prompt_emojis.items()):
full_prompt = f"QT {prompt}"
col = [col1, col2, col3][idx % 3]
with col:
if st.button(f"{emoji} {prompt}", key=f"btn_{idx}"):
handle_prompt_click(full_prompt, idx)
st.markdown("---")
st.markdown("### Generated Artwork:")
for key in st.session_state:
if key.startswith('selected_prompt_'):
idx = key.split('_')[-1]
images_key = f'generated_images_{idx}'
if images_key in st.session_state:
st.write("Prompt:", st.session_state[key])
cols = st.columns(len(st.session_state[images_key]))
for col, (model_name, result) in zip(cols, st.session_state[images_key]):
with col:
st.markdown(f"**{model_name}**")
if isinstance(result, str) and result.startswith("Error"):
st.error(result)
else:
# Updated to use use_container_width instead of use_column_width
st.image(result, use_container_width=True)
if __name__ == "__main__":
main() |