import gradio as gr import pandas as pd import numpy as np import os import time import re import json from auditqa.sample_questions import QUESTIONS from auditqa.engine.prompts import audience_prompts from auditqa.reports import POSSIBLE_REPORTS, files from auditqa.doc_process import process_pdf from langchain_core.messages import ( HumanMessage, SystemMessage, ) from langchain_huggingface import ChatHuggingFace from langchain_core.output_parsers import StrOutputParser from langchain_huggingface import HuggingFaceEndpoint from dotenv import load_dotenv load_dotenv() HF_token = os.environ["HF_TOKEN"] #process_pdf() # -------------------------------------------------------------------- # Gradio # -------------------------------------------------------------------- # Set up Gradio Theme theme = gr.themes.Base( primary_hue="blue", secondary_hue="red", font=[gr.themes.GoogleFont("Poppins"), "ui-sans-serif", "system-ui", "sans-serif"], text_size = gr.themes.utils.sizes.text_sm, ) init_prompt = """ Hello, I am Audit Q&A, a conversational assistant designed to help you understand audit Reports. I will answer your questions by using **Audit reports publishsed by Auditor General Office**. 💡 How to use (tabs on right) - **Reports**: You can choose to address your question to either specific report or a collection of report like District or Ministry focused reports. \ If you dont select any then the Consolidated report is relied upon to answer your question. - **Examples**: We have curated some example questions,select a particular question from category of questions. - **Sources**: This tab will display the relied upon paragraphs from the report, to help you in assessing or fact checking if the answer provided by Audit Q&A assitant is correct or not. ⚠️ For limitations of the tool please check **Disclaimer** tab. """ with gr.Blocks(title="Audit Q&A", css= "style.css", theme=theme,elem_id = "main-component") as demo: # user_id_state = gr.State([user_id]) with gr.Tab("AuditQ&A"): with gr.Row(elem_id="chatbot-row"): with gr.Column(scale=2): # state = gr.State([system_template]) chatbot = gr.Chatbot( value=[(None,init_prompt)], show_copy_button=True,show_label = False,elem_id="chatbot",layout = "panel", avatar_images = (None,"data-collection.png"), )#,avatar_images = ("assets/logo4.png",None)) # bot.like(vote,None,None) with gr.Row(elem_id = "input-message"): textbox=gr.Textbox(placeholder="Ask me anything here!",show_label=False,scale=7,lines = 1,interactive = True,elem_id="input-textbox") demo.queue() demo.launch()