from langchain_community.embeddings import HuggingFaceEmbeddings, HuggingFaceInferenceAPIEmbeddings from langchain.vectorstores import Chroma, Qdrant from qdrant_client import QdrantClient from qdrant_client.models import Distance, VectorParams from dotenv import load_dotenv import os provider_retrieval_model = "HF" embeddingmodel = "sentence-transformers/all-MiniLM-l6-v2" load_dotenv() HF_Token = os.environ.get("HF_TOKEN") client_path = f"./vectorstore" collection_name = f"collection" provider_retrieval_model = "HF" def create_vectorstore(docs): if provider_retrieval_model == "HF": qdrantClient = QdrantClient(path=client_path, prefer_grpc=True) embeddings = HuggingFaceInferenceAPIEmbeddings( api_key=HF_Token, model_name=embeddingmodel ) dim = 384 qdrantClient.create_collection( collection_name=collection_name, vectors_config=VectorParams(size=dim, distance=Distance.COSINE), ) vectorstore = Qdrant( client=qdrantClient, collection_name=collection_name, embeddings=embeddings, ) vectorstore.add_documents(docs)