import streamlit as st import requests import pandas as pd import re import json import configparser from datetime import datetime from torch import cuda # ------------------------------------------------------------------------------ # Import modules from the appStore package # These modules handle data preparation, embedding, search, region handling, # retrieval of RAG answers, and filtering utilities. # ------------------------------------------------------------------------------ from appStore.prep_data import process_giz_worldwide, remove_duplicates, get_max_end_year, extract_year from appStore.prep_utils import create_documents, get_client from appStore.embed import hybrid_embed_chunks from appStore.search import hybrid_search from appStore.region_utils import ( load_region_data, clean_country_code, get_country_name, get_regions, get_country_name_and_region_mapping ) # Note: The TF-IDF extraction is currently not used in the app. # from appStore.tfidf_extraction import extract_top_keywords from appStore.rag_utils import ( highlight_query, get_rag_answer, compute_title, format_project_id ) from appStore.filter_utils import ( parse_budget, filter_results, get_crs_options ) from appStore.crs_utils import lookup_crs_value # ------------------------------------------------------------------------------ # Model Configuration # ------------------------------------------------------------------------------ # Read model parameters from configuration file config = configparser.ConfigParser() config.read('model_params.cfg') DEDICATED_MODEL = config.get('MODEL', 'DEDICATED_MODEL') DEDICATED_ENDPOINT = config.get('MODEL', 'DEDICATED_ENDPOINT') WRITE_ACCESS_TOKEN = st.secrets["Llama_3_1"] # Set page configuration for Streamlit st.set_page_config(page_title="SEARCH IATI", layout='wide') # ------------------------------------------------------------------------------ # Load and Cache Project Data # ------------------------------------------------------------------------------ @st.cache_data def load_project_data(): """ Load and process the GIZ worldwide project data. Returns: pd.DataFrame: Processed project data as a pandas DataFrame. """ return process_giz_worldwide() project_data = load_project_data() # ------------------------------------------------------------------------------ # Calculate Budget Range (in million euros) # ------------------------------------------------------------------------------ budget_series = pd.to_numeric(project_data['total_project'], errors='coerce').dropna() min_budget_val = float(budget_series.min() / 1e6) max_budget_val = float(budget_series.max() / 1e6) # ------------------------------------------------------------------------------ # Prepare Region Data # ------------------------------------------------------------------------------ region_lookup_path = "docStore/regions_lookup.csv" region_df = load_region_data(region_lookup_path) # ------------------------------------------------------------------------------ # Determine Device for Computation # ------------------------------------------------------------------------------ device = 'cuda' if cuda.is_available() else 'cpu' # ------------------------------------------------------------------------------ # Layout: Header and About Section # ------------------------------------------------------------------------------ col_title, col_about = st.columns([8, 2]) with col_title: st.markdown("

GIZ Project Search (PROTOTYPE)

", unsafe_allow_html=True) with col_about: with st.expander("ℹ️ About"): st.markdown( """ This prototype app uses publicly available project data from the German International Cooperation Society (GIZ) as of 23rd February 2025. **Please do NOT enter sensitive or personal information.** **Note**: The answers are AI-generated and may be incorrect or misleading. """, unsafe_allow_html=True ) # ------------------------------------------------------------------------------ # Create or Load the Embeddings Collection # ------------------------------------------------------------------------------ collection_name = "giz_worldwide" client = get_client() # Display existing collections for debugging purposes print(client.get_collections()) # Uncomment the block below if you need to reprocess and embed documents. # chunks = process_giz_worldwide() # temp_doc = create_documents(chunks, 'chunks') # hybrid_embed_chunks(docs=temp_doc, collection_name=collection_name, del_if_exists=True) # Retrieve maximum project end year and region mapping max_end_year = get_max_end_year(client, collection_name) _, unique_sub_regions = get_regions(region_df) # Build mapping between country names and region codes country_name_mapping, iso_code_to_sub_region = get_country_name_and_region_mapping( client, collection_name, region_df, hybrid_search, clean_country_code, get_country_name ) unique_country_names = sorted(country_name_mapping.keys()) # ------------------------------------------------------------------------------ # Session State Reset Functions # ------------------------------------------------------------------------------ def reset_filters(): """ Reset all filter options in the session state to their default values. """ st.session_state["region_filter"] = "All/Not allocated" st.session_state["country_filter"] = "All/Not allocated" current_year = datetime.now().year default_start_year = current_year - 4 st.session_state["end_year_range"] = (default_start_year, max_end_year) st.session_state["crs_filter"] = "All/Not allocated" st.session_state["min_budget"] = min_budget_val st.session_state["client_filter"] = "All/Not allocated" st.session_state["query"] = "" st.session_state["show_exact_matches"] = False st.session_state["page"] = 1 def reset_page(): """ Reset the pagination page to the first page. """ st.session_state.page = 1 # ------------------------------------------------------------------------------ # Main Query Input # ------------------------------------------------------------------------------ var = st.text_input("Enter Question", key="query", on_change=reset_page) # ------------------------------------------------------------------------------ # Filter Controls - Row 1: Basic Filters # ------------------------------------------------------------------------------ col1, col2, col3, col4, col5 = st.columns([1, 1, 1, 1, 1]) with col1: region_filter = st.selectbox("Region", ["All/Not allocated"] + sorted(unique_sub_regions), key="region_filter", on_change=reset_page) # If a specific region is selected, filter the country names accordingly. if region_filter == "All/Not allocated": filtered_country_names = unique_country_names else: filtered_country_names = [ name for name, code in country_name_mapping.items() if iso_code_to_sub_region.get(code) == region_filter ] with col2: country_filter = st.selectbox("Country", ["All/Not allocated"] + filtered_country_names, key="country_filter", on_change=reset_page) with col3: current_year = datetime.now().year default_start_year = current_year - 4 end_year_range = st.slider( "Project End Year", min_value=2010, max_value=max_end_year, value=(default_start_year, max_end_year), key="end_year_range", on_change=reset_page ) with col4: crs_options = ["All/Not allocated"] + get_crs_options(client, collection_name) crs_filter = st.selectbox("CRS", crs_options, key="crs_filter", on_change=reset_page) with col5: min_budget = st.slider( "Minimum Project Budget (Million €)", min_value=min_budget_val, max_value=max_budget_val, value=min_budget_val, key="min_budget", on_change=reset_page ) # ------------------------------------------------------------------------------ # Filter Controls - Row 2: Additional Filters # ------------------------------------------------------------------------------ col1_2, col2_2, col3_2, col4_2, col5_2 = st.columns(5) with col1_2: client_options = sorted(project_data["client"].dropna().unique().tolist()) client_filter = st.selectbox("Client", ["All/Not allocated"] + client_options, key="client_filter") # Columns 2 to 5 are left empty for layout alignment with col2_2: st.empty() with col3_2: st.empty() with col4_2: st.empty() with col5_2: st.empty() # ------------------------------------------------------------------------------ # Filter Controls - Row 3: Toggle and Reset Button # ------------------------------------------------------------------------------ col_left, col_right = st.columns([11, 1]) with col_left: # Checkbox to toggle exact match filtering show_exact_matches = st.checkbox("Show only exact matches", key="show_exact_matches", on_change=reset_page) with col_right: # Reset filters button (right-aligned) with st.container(): st.markdown("
", unsafe_allow_html=True) if st.button("**Reset Filters**", key="reset_button_row3"): reset_filters() st.markdown("
", unsafe_allow_html=True) # ------------------------------------------------------------------------------ # Helper Function: Validate Project ID # ------------------------------------------------------------------------------ def valid_project_id(pid_str): """ Check if the provided project ID string is valid. Args: pid_str (str): The project ID string. Returns: bool: True if the project ID is valid, False otherwise. """ if not pid_str: return False if pid_str.lower() in ["nan", "none"]: return False return True # ------------------------------------------------------------------------------ # Main Search and Display Logic # ------------------------------------------------------------------------------ if not var.strip(): # Inform the user if no query is entered. st.info("Please enter a question to see results.") else: # --- 1. Execute Hybrid Search --- results = hybrid_search(client, var, collection_name, limit=500) semantic_all, lexical_all = results[0], results[1] # Filter out results with very short page content semantic_all = [r for r in semantic_all if len(r.payload["page_content"]) >= 5] lexical_all = [r for r in lexical_all if len(r.payload["page_content"]) >= 5] # Apply a threshold to semantic search scores if needed semantic_thresholded = [r for r in semantic_all if r.score >= 0.25] # --- 2. Apply User-Selected Filters --- filtered_semantic = filter_results( semantic_thresholded, country_filter, region_filter, end_year_range, crs_filter, min_budget, region_df, iso_code_to_sub_region, clean_country_code, get_country_name ) filtered_lexical = filter_results( lexical_all, country_filter, region_filter, end_year_range, crs_filter, min_budget, region_df, iso_code_to_sub_region, clean_country_code, get_country_name ) # Additional filtering by client if selected if client_filter != "All/Not allocated": filtered_semantic = [r for r in filtered_semantic if r.payload.get("metadata", {}).get("client", "Unknown Client") == client_filter] filtered_lexical = [r for r in filtered_lexical if r.payload.get("metadata", {}).get("client", "Unknown Client") == client_filter] # Remove duplicate entries from the results filtered_semantic_no_dupe = remove_duplicates(filtered_semantic) filtered_lexical_no_dupe = remove_duplicates(filtered_lexical) def format_currency(value): """ Format a numerical value as a currency string in euros. Args: value: The value to format. Returns: str: Formatted currency string. """ try: return f"€{int(float(value)):,}" except (ValueError, TypeError): return value # --- Reprint the user query for clarity --- st.markdown( f"
Query: {var}
", unsafe_allow_html=True ) # --- 3. Display Search Results Based on Matching Mode --- # Lexical (Exact Match) Search Results Branch if show_exact_matches: query_substring = var.strip().lower() lexical_substring_filtered = [ r for r in filtered_lexical if query_substring in r.payload["page_content"].lower() ] filtered_lexical_no_dupe = remove_duplicates(lexical_substring_filtered) if not filtered_lexical_no_dupe: st.write('No exact matches, consider unchecking "Show only exact matches"') else: top_results = filtered_lexical_no_dupe # Use all matching lexical results # --- Pagination Setup --- page_size = 15 total_results = len(top_results) total_pages = (total_results - 1) // page_size + 1 if "page" not in st.session_state: st.session_state.page = 1 current_page = st.session_state.page # Display current page info page_num = f"{current_page}" if current_page != 1 else f"{current_page}" total_pages_str = f"{total_pages}" col_title, col_pag = st.columns([13, 1]) with col_title: st.markdown( f"Showing **{total_results}** Lexical Search results (Page {page_num} of {total_pages_str})", unsafe_allow_html=True ) with col_pag: new_page_top = st.selectbox("Select Page", list(range(1, total_pages + 1)), index=current_page - 1, key="page_top") st.session_state.page = new_page_top start_index = (st.session_state.page - 1) * page_size end_index = start_index + page_size paged_results = top_results[start_index:end_index] # Display each result with formatted metadata and content preview for i, res in enumerate(paged_results, start=start_index+1): metadata = res.payload.get('metadata', {}) if "title" not in metadata: metadata["title"] = compute_title(metadata) # Highlight query text in the title title_html = highlight_query(metadata["title"], var) if var.strip() else metadata["title"] title_clean = re.sub(r'|', '', title_html) st.markdown(f"#### {i}. **{title_clean}**", unsafe_allow_html=True) # Prepare a description preview with an expandable "Show more" option objective = metadata.get("objective", "None") desc_en = metadata.get("description.en", "").strip() desc_de = metadata.get("description.de", "").strip() description = desc_en if desc_en else desc_de if not description: description = "No project description available" words = description.split() preview_word_count = 90 preview_text = " ".join(words[:preview_word_count]) remainder_text = " ".join(words[preview_word_count:]) col_left, col_right = st.columns(2) with col_left: st.markdown(highlight_query(preview_text, var), unsafe_allow_html=True) if remainder_text: with st.expander("Show more"): st.markdown(highlight_query(remainder_text, var), unsafe_allow_html=True) with col_right: start_year_str = extract_year(metadata.get('start_year', None)) or "Unknown" end_year_str = extract_year(metadata.get('end_year', None)) or "Unknown" total_project = metadata.get('total_project', "Unknown") total_volume = metadata.get('total_volume', "Unknown") formatted_project_budget = format_currency(total_project) formatted_total_volume = format_currency(total_volume) country_raw = metadata.get('country', "Unknown") crs_key = metadata.get("crs_key", "").strip() crs_key_clean = re.sub(r'\.0$', '', str(crs_key)) new_crs_value = lookup_crs_value(crs_key_clean) new_crs_value_clean = re.sub(r'\.0$', '', str(new_crs_value)) crs_combined = f"{crs_key_clean}: {new_crs_value_clean}" if crs_key_clean else "Unknown" # Process predecessor and successor project IDs if available predecessor = metadata.get("predecessor_id", "").strip() successor = metadata.get("successor_id", "").strip() parts = [] if valid_project_id(predecessor): try: formatted_pred = format_project_id(int(float(predecessor))) except Exception: formatted_pred = predecessor parts.append(f"**Predecessor Project:** {formatted_pred}") if valid_project_id(successor): try: formatted_succ = format_project_id(int(float(successor))) except Exception: formatted_succ = successor parts.append(f"**Successor Project:** {formatted_succ}") extra_line = " | ".join(parts) if parts else "" # Build additional project information text additional_text = ( f"**Objective:** {highlight_query(objective, var)}
" f"**Commissioned by:** {metadata.get('client', 'Unknown Client')}
" f"**Projekt duration:** {start_year_str}-{end_year_str}
" f"**Budget:** Project: {formatted_project_budget}, Total volume: {formatted_total_volume}" ) if extra_line: additional_text += f"
{extra_line}" additional_text += f"
**Country:** {country_raw}
**Sector:** {crs_combined}" # Hide sensitive contact info if present contact = metadata.get("contact", "").strip() if contact and contact.lower() != "transparenz@giz.de": additional_text += f"
**Contact:** xxx@giz.de" st.markdown(additional_text, unsafe_allow_html=True) st.divider() # Bottom pagination widget for lexical results col_pag_bot = st.columns([11, 1])[1] new_page_bot = col_pag_bot.selectbox("Select Page", list(range(1, total_pages + 1)), index=st.session_state.page - 1, key="page_bot") st.session_state.page = new_page_bot # Semantic Search Results Branch else: if not filtered_semantic_no_dupe: st.write("No relevant results found.") else: page_size = 15 total_results = len(filtered_semantic_no_dupe) total_pages = (total_results - 1) // page_size + 1 if "page" not in st.session_state: st.session_state.page = 1 current_page = st.session_state.page start_index = (st.session_state.page - 1) * page_size end_index = start_index + page_size top_results = filtered_semantic_no_dupe[start_index:end_index] # --- Retrieve and Format RAG Answer --- rag_answer = get_rag_answer(var, top_results, DEDICATED_ENDPOINT, WRITE_ACCESS_TOKEN) bullet_lines = [] for line in rag_answer.splitlines(): if line.strip(): # Clean and format the RAG answer lines line = re.sub(r'^[-*]\s+', '', line.strip()) line = re.sub(r'\*\*(.*?)\*\*', r'\1', line) bullet_lines.append(f"
  • {line}
  • ") formatted_rag_answer = ( "
    " "
    " ) st.markdown(formatted_rag_answer, unsafe_allow_html=True) st.divider() # Pagination controls for semantic results col_title, col_pag = st.columns([13, 1]) with col_title: page_num = f"{current_page}" if current_page != 1 else f"{current_page}" total_pages_str = f"{total_pages}" st.markdown( f"Showing **{total_results}** Semantic Search results (Page {page_num} of {total_pages_str})", unsafe_allow_html=True ) with col_pag: new_page_top = st.selectbox("Select Page", list(range(1, total_pages + 1)), index=current_page - 1, key="page_top_sem") st.session_state.page = new_page_top # Display each semantic result with detailed metadata and preview for i, res in enumerate(top_results, start=start_index+1): metadata = res.payload.get('metadata', {}) if "title" not in metadata: metadata["title"] = compute_title(metadata) title_clean = re.sub(r'|', '', metadata["title"]) st.markdown(f"#### {i}. **{title_clean}**", unsafe_allow_html=True) desc_en = metadata.get("description.en", "").strip() desc_de = metadata.get("description.de", "").strip() description = desc_en if desc_en else desc_de if not description: description = "No project description available" words = description.split() preview_word_count = 90 preview_text = " ".join(words[:preview_word_count]) remainder_text = " ".join(words[preview_word_count:]) col_left, col_right = st.columns(2) with col_left: st.markdown(highlight_query(preview_text, var), unsafe_allow_html=True) if remainder_text: with st.expander("Show more"): st.markdown(highlight_query(remainder_text, var), unsafe_allow_html=True) with col_right: start_year_str = extract_year(metadata.get('start_year', None)) or "Unknown" end_year_str = extract_year(metadata.get('end_year', None)) or "Unknown" total_project = metadata.get('total_project', "Unknown") total_volume = metadata.get('total_volume', "Unknown") formatted_project_budget = format_currency(total_project) formatted_total_volume = format_currency(total_volume) country_raw = metadata.get('country', "Unknown") crs_key = metadata.get("crs_key", "").strip() crs_key_clean = re.sub(r'\.0$', '', str(crs_key)) new_crs_value = lookup_crs_value(crs_key_clean) new_crs_value_clean = re.sub(r'\.0$', '', str(new_crs_value)) crs_combined = f"{crs_key_clean}: {new_crs_value_clean}" if crs_key_clean else "Unknown" predecessor = metadata.get("predecessor_id", "").strip() successor = metadata.get("successor_id", "").strip() parts = [] if valid_project_id(predecessor): try: formatted_pred = format_project_id(int(float(predecessor))) except Exception: formatted_pred = predecessor parts.append(f"**Predecessor Project:** {formatted_pred}") if valid_project_id(successor): try: formatted_succ = format_project_id(int(float(successor))) except Exception: formatted_succ = successor parts.append(f"**Successor Project:** {formatted_succ}") extra_line = " | ".join(parts) if parts else "" additional_text = ( f"**Objective:** {metadata.get('objective', '')}
    " f"**Commissioned by:** {metadata.get('client', 'Unknown Client')}
    " f"**Projekt duration:** {start_year_str}-{end_year_str}
    " f"**Budget:** Project: {formatted_project_budget}, Total volume: {formatted_total_volume}" ) if extra_line: additional_text += f"
    {extra_line}" additional_text += f"
    **Country:** {country_raw}
    **Sector:** {crs_combined}" contact = metadata.get("contact", "").strip() if contact and contact.lower() != "transparenz@giz.de": additional_text += f"
    **Contact:** xxx@giz.de" st.markdown(additional_text, unsafe_allow_html=True) st.divider() # Bottom pagination widget for semantic results col_pag_bot = st.columns([13, 1])[1] new_page_bot = col_pag_bot.selectbox("Select Page", list(range(1, total_pages + 1)), index=st.session_state.page - 1, key="page_bot_sem") st.session_state.page = new_page_bot