import streamlit as st import requests import pandas as pd import re import json import configparser from datetime import datetime from torch import cuda # Import existing modules from appStore from appStore.prep_data import process_giz_worldwide, remove_duplicates, get_max_end_year, extract_year from appStore.prep_utils import create_documents, get_client from appStore.embed import hybrid_embed_chunks from appStore.search import hybrid_search from appStore.region_utils import ( load_region_data, clean_country_code, get_country_name, get_regions, get_country_name_and_region_mapping ) # TF-IDF part (excluded from the app for now) # from appStore.tfidf_extraction import extract_top_keywords # Import helper modules from appStore.rag_utils import ( highlight_query, get_rag_answer, compute_title ) from appStore.filter_utils import ( parse_budget, filter_results, get_crs_options ) from appStore.crs_utils import lookup_crs_value ########################################### # Model Config ########################################### # Initialize the parser and read the configuration file config = configparser.ConfigParser() config.read('model_params.cfg') # Retrieve model parameters from the "MODEL" section DEDICATED_MODEL = config.get('MODEL', 'DEDICATED_MODEL') DEDICATED_ENDPOINT = config.get('MODEL', 'DEDICATED_ENDPOINT') WRITE_ACCESS_TOKEN = config.get('MODEL', 'WRITE_ACCESS_TOKEN') st.set_page_config(page_title="SEARCH IATI", layout='wide') ########################################### # Cache the project data ########################################### @st.cache_data def load_project_data(): """ Load and process the GIZ worldwide data, returning a pandas DataFrame. """ return process_giz_worldwide() project_data = load_project_data() # Determine min and max budgets in million euros budget_series = pd.to_numeric(project_data['total_project'], errors='coerce').dropna() min_budget_val = float(budget_series.min() / 1e6) max_budget_val = float(budget_series.max() / 1e6) ########################################### # Prepare region data ########################################### region_lookup_path = "docStore/regions_lookup.csv" region_df = load_region_data(region_lookup_path) ########################################### # Get device ########################################### device = 'cuda' if cuda.is_available() else 'cpu' ########################################### # Streamlit App Layout ########################################### col_title, col_about = st.columns([8, 2]) with col_title: st.markdown("

GIZ Project Search (PROTOTYPE)

", unsafe_allow_html=True) with col_about: with st.expander("ℹ️ About"): st.markdown( """ This app is a prototype for testing purposes using publicly available project data from the German International Cooperation Society (GIZ) as of 23rd February 2025. **Please do NOT enter sensitive or personal information.** **Note**: The answers are AI-generated and may be wrong or misleading. """, unsafe_allow_html=True ) # Main query input var = st.text_input("Enter Question") ########################################### # Create or load the embeddings collection ########################################### collection_name = "giz_worldwide" client = get_client() print(client.get_collections()) # If needed, once only: # chunks = process_giz_worldwide() # temp_doc = create_documents(chunks, 'chunks') # hybrid_embed_chunks(docs=temp_doc, collection_name=collection_name, del_if_exists=True) max_end_year = get_max_end_year(client, collection_name) _, unique_sub_regions = get_regions(region_df) # Build country->code and code->region mapping country_name_mapping, iso_code_to_sub_region = get_country_name_and_region_mapping( client, collection_name, region_df, hybrid_search, clean_country_code, get_country_name ) unique_country_names = sorted(country_name_mapping.keys()) ########################################### # Filter Controls ########################################### col1, col2, col3, col4, col5 = st.columns([1, 1, 1, 1, 1]) with col1: region_filter = st.selectbox("Region", ["All/Not allocated"] + sorted(unique_sub_regions)) if region_filter == "All/Not allocated": filtered_country_names = unique_country_names else: filtered_country_names = [ name for name, code in country_name_mapping.items() if iso_code_to_sub_region.get(code) == region_filter ] with col2: country_filter = st.selectbox("Country", ["All/Not allocated"] + filtered_country_names) with col3: current_year = datetime.now().year default_start_year = current_year - 4 end_year_range = st.slider( "Project End Year", min_value=2010, max_value=max_end_year, value=(default_start_year, max_end_year) ) with col4: crs_options = ["All/Not allocated"] + get_crs_options(client, collection_name) crs_filter = st.selectbox("CRS", crs_options) with col5: min_budget = st.slider( "Minimum Project Budget (Million €)", min_value=min_budget_val, max_value=max_budget_val, value=min_budget_val ) show_exact_matches = st.checkbox("Show only exact matches", value=False) ########################################### # Main Search / Results ########################################### if not var.strip(): st.info("Please enter a question to see results.") else: # 1) Perform hybrid search results = hybrid_search(client, var, collection_name, limit=500) semantic_all, lexical_all = results[0], results[1] # Filter out short pages semantic_all = [r for r in semantic_all if len(r.payload["page_content"]) >= 5] lexical_all = [r for r in lexical_all if len(r.payload["page_content"]) >= 5] # Apply threshold to semantic results if desired semantic_thresholded = [r for r in semantic_all if r.score >= 0.0] # 2) Filter results based on the user’s selections filtered_semantic = filter_results( semantic_thresholded, country_filter, region_filter, end_year_range, crs_filter, min_budget, region_df, iso_code_to_sub_region, clean_country_code, get_country_name ) filtered_lexical = filter_results( lexical_all, country_filter, region_filter, end_year_range, crs_filter, min_budget, region_df, iso_code_to_sub_region, clean_country_code, get_country_name ) # Remove duplicates filtered_semantic_no_dupe = remove_duplicates(filtered_semantic) filtered_lexical_no_dupe = remove_duplicates(filtered_lexical) def format_currency(value): """ Format a numeric or string value as currency (EUR) with commas. """ try: return f"€{int(float(value)):,}" except (ValueError, TypeError): return value # 3) Display results if show_exact_matches: # Lexical substring match only st.write("Showing **Top 15 Lexical Search results**") query_substring = var.strip().lower() lexical_substring_filtered = [ r for r in lexical_all if query_substring in r.payload["page_content"].lower() ] filtered_lexical = filter_results( lexical_substring_filtered, country_filter, region_filter, end_year_range, crs_filter, min_budget, region_df, iso_code_to_sub_region, clean_country_code, get_country_name ) filtered_lexical_no_dupe = remove_duplicates(filtered_lexical) if not filtered_lexical_no_dupe: st.write('No exact matches, consider unchecking "Show only exact matches"') else: top_results = filtered_lexical_no_dupe[:10] # RAG answer rag_answer = get_rag_answer(var, top_results, DEDICATED_ENDPOINT, WRITE_ACCESS_TOKEN) st.markdown(f"

{var}

", unsafe_allow_html=True) st.write(rag_answer) st.divider() # Show each result for res in top_results: metadata = res.payload.get('metadata', {}) if "title" not in metadata: metadata["title"] = compute_title(metadata) # Title title_html = highlight_query(metadata["title"], var) if var.strip() else metadata["title"] st.markdown(f"#### {title_html}", unsafe_allow_html=True) # Description snippet objective = metadata.get("objective", "None") desc_en = metadata.get("description.en", "").strip() desc_de = metadata.get("description.de", "").strip() description = desc_en if desc_en else desc_de if not description: description = "No project description available" words = description.split() preview_word_count = 90 preview_text = " ".join(words[:preview_word_count]) remainder_text = " ".join(words[preview_word_count:]) col_left, col_right = st.columns(2) with col_left: st.markdown(highlight_query(preview_text, var), unsafe_allow_html=True) if remainder_text: with st.expander("Show more"): st.markdown(highlight_query(remainder_text, var), unsafe_allow_html=True) with col_right: start_year_str = extract_year(metadata.get('start_year', None)) or "Unknown" end_year_str = extract_year(metadata.get('end_year', None)) or "Unknown" total_project = metadata.get('total_project', "Unknown") total_volume = metadata.get('total_volume', "Unknown") formatted_project_budget = format_currency(total_project) formatted_total_volume = format_currency(total_volume) country_raw = metadata.get('country', "Unknown") crs_key = metadata.get("crs_key", "").strip() crs_key_clean = re.sub(r'\.0$', '', str(crs_key)) new_crs_value = lookup_crs_value(crs_key_clean) new_crs_value_clean = re.sub(r'\.0$', '', str(new_crs_value)) crs_combined = f"{crs_key_clean}: {new_crs_value_clean}" if crs_key_clean else "Unknown" # Additional text additional_text = ( f"**Objective:** {highlight_query(objective, var)}
" f"**Commissioned by:** {metadata.get('client', 'Unknown Client')}
" f"**Projekt duration:** {start_year_str}-{end_year_str}
" f"**Budget:** Project: {formatted_project_budget}, Total volume: {formatted_total_volume}
" f"**Country:** {country_raw}
" f"**Sector:** {crs_combined}" ) contact = metadata.get("contact", "").strip() if contact and contact.lower() != "transparenz@giz.de": additional_text += f"
**Contact:** xxx@giz.de" st.markdown(additional_text, unsafe_allow_html=True) st.divider() else: # Semantic results if not filtered_semantic_no_dupe: st.write("No relevant results found.") else: top_results = filtered_semantic_no_dupe[:10] rag_answer = get_rag_answer(var, top_results, DEDICATED_ENDPOINT, WRITE_ACCESS_TOKEN) st.markdown(f"

{var}

", unsafe_allow_html=True) st.write(rag_answer) st.divider() st.write("Showing **Top 15 Semantic Search results**") for res in top_results: metadata = res.payload.get('metadata', {}) if "title" not in metadata: metadata["title"] = compute_title(metadata) st.markdown(f"#### {metadata['title']}") desc_en = metadata.get("description.en", "").strip() desc_de = metadata.get("description.de", "").strip() description = desc_en if desc_en else desc_de if not description: description = "No project description available" words = description.split() preview_word_count = 90 preview_text = " ".join(words[:preview_word_count]) remainder_text = " ".join(words[preview_word_count:]) col_left, col_right = st.columns(2) with col_left: st.markdown(highlight_query(preview_text, var), unsafe_allow_html=True) if remainder_text: with st.expander("Show more"): st.markdown(highlight_query(remainder_text, var), unsafe_allow_html=True) with col_right: start_year_str = extract_year(metadata.get('start_year', None)) or "Unknown" end_year_str = extract_year(metadata.get('end_year', None)) or "Unknown" total_project = metadata.get('total_project', "Unknown") total_volume = metadata.get('total_volume', "Unknown") formatted_project_budget = format_currency(total_project) formatted_total_volume = format_currency(total_volume) country_raw = metadata.get('country', "Unknown") crs_key = metadata.get("crs_key", "").strip() crs_key_clean = re.sub(r'\.0$', '', str(crs_key)) new_crs_value = lookup_crs_value(crs_key_clean) new_crs_value_clean = re.sub(r'\.0$', '', str(new_crs_value)) crs_combined = f"{crs_key_clean}: {new_crs_value_clean}" if crs_key_clean else "Unknown" additional_text = ( f"**Objective:** {metadata.get('objective', '')}
" f"**Commissioned by:** {metadata.get('client', 'Unknown Client')}
" f"**Projekt duration:** {start_year_str}-{end_year_str}
" f"**Budget:** Project: {formatted_project_budget}, Total volume: {formatted_total_volume}
" f"**Country:** {country_raw}
" f"**Sector:** {crs_combined}" ) contact = metadata.get("contact", "").strip() if contact and contact.lower() != "transparenz@giz.de": additional_text += f"
**Contact:** xxx@giz.de" st.markdown(additional_text, unsafe_allow_html=True) st.divider()