import streamlit as st import requests import pandas as pd import re from appStore.prep_data import process_giz_worldwide, remove_duplicates, get_max_end_year, extract_year from appStore.prep_utils import create_documents, get_client from appStore.embed import hybrid_embed_chunks from appStore.search import hybrid_search from appStore.region_utils import load_region_data, get_country_name, get_regions from appStore.tfidf_extraction import extract_top_keywords from torch import cuda import json from datetime import datetime #model_config = getconfig("model_params.cfg") ########### # ToDo move to functions # Configuration for the dedicated model DEDICATED_MODEL = "meta-llama/Llama-3.1-8B-Instruct" DEDICATED_ENDPOINT = "https://qu2d8m6dmsollhly.us-east-1.aws.endpoints.huggingface.cloud" # Write access token from the settings WRITE_ACCESS_TOKEN = st.secrets["Llama_3_1"] def get_rag_answer(query, top_results): context = "\n\n".join([res.payload["page_content"] for res in top_results]) max_context_chars = 15000 if len(context) > max_context_chars: context = context[:max_context_chars] prompt = ( "Using the following context, answer the question concisely. " "Only output the final answer below, without repeating the context or question.\n\n" f"Context:\n{context}\n\n" f"Question: {query}\n\n" "Answer:" ) headers = {"Authorization": f"Bearer {WRITE_ACCESS_TOKEN}"} payload = { "inputs": prompt, "parameters": {"max_new_tokens": 150} } response = requests.post(DEDICATED_ENDPOINT, headers=headers, json=payload) if response.status_code == 200: result = response.json() answer = result[0]["generated_text"] if "Answer:" in answer: answer = answer.split("Answer:")[-1].strip() return answer else: return f"Error in generating answer: {response.text}" # Helper: Format project id (e.g., "201940485" -> "2019.4048.5") def format_project_id(pid): s = str(pid) if len(s) > 5: return s[:4] + "." + s[4:-1] + "." + s[-1] return s # Helper: Compute title from metadata using name.en (or name.de if empty) def compute_title(metadata): name_en = metadata.get("name.en", "").strip() name_de = metadata.get("name.de", "").strip() base = name_en if name_en else name_de pid = metadata.get("id", "") if base and pid: return f"{base} [{format_project_id(pid)}]" return base or "No Title" # Helper: Get CRS filter options from all documents @st.cache_data def get_crs_options(_client, collection_name): results = hybrid_search(_client, "", collection_name) all_results = results[0] + results[1] crs_set = set() for res in all_results: metadata = res.payload.get('metadata', {}) crs_key = metadata.get("crs_key", "").strip() crs_value = metadata.get("crs_value", "").strip() if crs_key or crs_value: crs_combined = f"{crs_key}: {crs_value}" crs_set.add(crs_combined) return sorted(crs_set) # Revised filter_results: Allow missing end_year or CRS; enforce CRS only when present. def filter_results(results, country_filter, region_filter, end_year_range, crs_filter): filtered = [] for r in results: metadata = r.payload.get('metadata', {}) countries = metadata.get('countries', "[]") year_str = metadata.get('end_year') if year_str: extracted = extract_year(year_str) try: end_year_val = int(extracted) if extracted != "Unknown" else 0 except ValueError: end_year_val = 0 else: end_year_val = 0 try: c_list = json.loads(countries.replace("'", '"')) c_list = [code.upper() for code in c_list if len(code) == 2] except json.JSONDecodeError: c_list = [] selected_iso_code = country_name_mapping.get(country_filter, None) if region_filter != "All/Not allocated": countries_in_region = [code for code in c_list if iso_code_to_sub_region.get(code) == region_filter] else: countries_in_region = c_list crs_key = metadata.get("crs_key", "").strip() crs_value = metadata.get("crs_value", "").strip() crs_combined = f"{crs_key}: {crs_value}" if (crs_key or crs_value) else "" # Only enforce CRS filter if result has a CRS value. if crs_filter != "All/Not allocated" and crs_combined: if crs_filter != crs_combined: continue # Allow projects with no valid end_year to pass (if end_year_val is 0) year_ok = True if end_year_val == 0 else (end_year_range[0] <= end_year_val <= end_year_range[1]) if ((country_filter == "All/Not allocated" or (selected_iso_code and selected_iso_code in c_list)) and (region_filter == "All/Not allocated" or countries_in_region) and year_ok): filtered.append(r) return filtered # Get the device to be used (GPU or CPU) device = 'cuda' if cuda.is_available() else 'cpu' st.set_page_config(page_title="SEARCH IATI", layout='wide') st.title("GIZ Project Database (PROTOTYPE)") var = st.text_input("Enter Search Question") # Load the region lookup CSV region_lookup_path = "docStore/regions_lookup.csv" region_df = load_region_data(region_lookup_path) #################### Create the embeddings collection and save ###################### # the steps below need to be performed only once and then commented out any unnecssary compute over-run ##### First we process and create the chunks for relvant data source #chunks = process_giz_worldwide() ##### Convert to langchain documents #temp_doc = create_documents(chunks,'chunks') ##### Embed and store docs, check if collection exist then you need to update the collection collection_name = "giz_worldwide" #hybrid_embed_chunks(docs=temp_doc, collection_name=collection_name, del_if_exists=True) ################### Hybrid Search ##################################################### client = get_client() print(client.get_collections()) max_end_year = get_max_end_year(client, collection_name) _, unique_sub_regions = get_regions(region_df) @st.cache_data def get_country_name_and_region_mapping(_client, collection_name, region_df): results = hybrid_search(_client, "", collection_name) country_set = set() for res in results[0] + results[1]: countries = res.payload.get('metadata', {}).get('countries', "[]") try: country_list = json.loads(countries.replace("'", '"')) two_digit_codes = [code.upper() for code in country_list if len(code) == 2] country_set.update(two_digit_codes) except json.JSONDecodeError: pass country_name_to_code = {} iso_code_to_sub_region = {} for code in country_set: name = get_country_name(code, region_df) sub_region_row = region_df[region_df['alpha-2'] == code] sub_region = sub_region_row['sub-region'].values[0] if not sub_region_row.empty else "Not allocated" country_name_to_code[name] = code iso_code_to_sub_region[code] = sub_region return country_name_to_code, iso_code_to_sub_region client = get_client() country_name_mapping, iso_code_to_sub_region = get_country_name_and_region_mapping(client, collection_name, region_df) unique_country_names = sorted(country_name_mapping.keys()) # Layout filters in columns col1, col2, col3, col4 = st.columns([1, 1, 1, 4]) with col1: region_filter = st.selectbox("Region", ["All/Not allocated"] + sorted(unique_sub_regions)) # Compute filtered_country_names based on region_filter: if region_filter == "All/Not allocated": filtered_country_names = unique_country_names else: filtered_country_names = [name for name, code in country_name_mapping.items() if iso_code_to_sub_region.get(code) == region_filter] with col2: country_filter = st.selectbox("Country", ["All/Not allocated"] + filtered_country_names) with col3: current_year = datetime.now().year default_start_year = current_year - 4 end_year_range = st.slider("Project End Year", min_value=2010, max_value=max_end_year, value=(default_start_year, max_end_year)) with col4: crs_options = ["All/Not allocated"] + get_crs_options(client, collection_name) crs_filter = st.selectbox("CRS", crs_options) # Checkbox for exact matches show_exact_matches = st.checkbox("Show only exact matches", value=False) # Run the search results = hybrid_search(client, var, collection_name, limit=500) semantic_all = results[0] lexical_all = results[1] semantic_all = [r for r in semantic_all if len(r.payload["page_content"]) >= 5] lexical_all = [r for r in lexical_all if len(r.payload["page_content"]) >= 5] semantic_thresholded = [r for r in semantic_all if r.score >= 0.0] filtered_semantic = filter_results(semantic_thresholded, country_filter, region_filter, end_year_range, crs_filter) filtered_lexical = filter_results(lexical_all, country_filter, region_filter, end_year_range, crs_filter) filtered_semantic_no_dupe = remove_duplicates(filtered_semantic) filtered_lexical_no_dupe = remove_duplicates(filtered_lexical) def format_currency(value): try: return f"€{int(float(value)):,}" except (ValueError, TypeError): return value # Helper to highlight query matches (case-insensitive) def highlight_query(text, query): pattern = re.compile(re.escape(query), re.IGNORECASE) return pattern.sub(lambda m: f"**{m.group(0)}**", text) ############################### # Display Lexical Results Branch ############################### if show_exact_matches: st.write(f"Showing **Top 15 Lexical Search results** for query: {var}") query_substring = var.strip().lower() lexical_substring_filtered = [r for r in lexical_all if query_substring in r.payload["page_content"].lower()] filtered_lexical = filter_results(lexical_substring_filtered, country_filter, region_filter, end_year_range, crs_filter) filtered_lexical_no_dupe = remove_duplicates(filtered_lexical) if not filtered_lexical_no_dupe: st.write('No exact matches, consider unchecking "Show only exact matches"') else: top_results = filtered_lexical_no_dupe[:5] rag_answer = get_rag_answer(var, top_results) st.markdown("### Generated Answer") st.write(rag_answer) st.divider() for res in top_results: metadata = res.payload.get('metadata', {}) if "title" not in metadata: metadata["title"] = compute_title(metadata) display_title = highlight_query(metadata["title"], var) if var.strip() else metadata["title"] proj_id = metadata.get('id', 'Unknown') st.markdown(f"#### {display_title}") countries = metadata.get('countries', "[]") client_name = metadata.get('client', 'Unknown Client') start_year = metadata.get('start_year', None) end_year = metadata.get('end_year', None) total_volume = metadata.get('total_volume', "Unknown") total_project = metadata.get('total_project', "Unknown") objectives = metadata.get("objectives", "") desc_de = metadata.get("description.de", "") desc_en = metadata.get("description.en", "") description = desc_de if desc_de else desc_en full_snippet = f"Objective: {objectives} Description: {description}" words = full_snippet.split() preview_word_count = 200 preview_text = " ".join(words[:preview_word_count]) remainder_text = " ".join(words[preview_word_count:]) preview_text = highlight_query(preview_text, var) if var.strip() else preview_text st.write(preview_text) if remainder_text: with st.expander("Show more"): st.write(remainder_text) full_text = res.payload['page_content'] top_keywords = extract_top_keywords(full_text, top_n=5) if top_keywords: st.markdown(f"_{' · '.join(top_keywords)}_") # Format year range and budget info start_year_str = extract_year(start_year) if start_year else "Unknown" end_year_str = extract_year(end_year) if end_year else "Unknown" formatted_project_budget = format_currency(total_project) formatted_total_volume = format_currency(total_volume) # Compute matched country names (as before) try: c_list = json.loads(metadata.get('countries', "[]").replace("'", '"')) except json.JSONDecodeError: c_list = [] matched_countries = [] for code in c_list: if len(code) == 2: resolved_name = get_country_name(code.upper(), region_df) if resolved_name.upper() != code.upper(): matched_countries.append(resolved_name) # Compute CRS combined value crs_key = metadata.get("crs_key", "").strip() crs_value = metadata.get("crs_value", "").strip() crs_combined = f"{crs_key}: {crs_value}" if (crs_key or crs_value) else "Unknown" # Build the additional text with original details, then add Sector and contact. additional_text = ( f"**{', '.join(matched_countries)}**, commissioned by **{client_name}**\n" f"Projekt duration **{start_year_str}-{end_year_str}**\n" f"Budget: Project: **{formatted_project_budget}**, Total volume: **{formatted_total_volume}**\n" f"Country: **{', '.join(matched_countries)}**\n" f"Sector: **{crs_combined}**" ) contact = metadata.get("contact", "").strip() if contact and contact.lower() != "transparenz@giz.de": additional_text += f" | Contact: **{contact}**" st.markdown(additional_text) st.divider() ############################### # Display Semantic Results Branch ############################### else: st.write(f"Showing **Top 15 Semantic Search results** for query: {var}") if not filtered_semantic_no_dupe: st.write("No relevant results found.") else: top_results = filtered_semantic_no_dupe[:5] rag_answer = get_rag_answer(var, top_results) st.markdown("### Generated Answer") st.write(rag_answer) st.divider() for res in top_results: metadata = res.payload.get('metadata', {}) if "title" not in metadata: metadata["title"] = compute_title(metadata) display_title = metadata["title"] st.markdown(f"#### {display_title}") countries = metadata.get('countries', "[]") client_name = metadata.get('client', 'Unknown Client') start_year = metadata.get('start_year', None) end_year = metadata.get('end_year', None) total_volume = metadata.get('total_volume', "Unknown") total_project = metadata.get('total_project', "Unknown") objectives = metadata.get("objectives", "") desc_de = metadata.get("description.de", "") desc_en = metadata.get("description.en", "") description = desc_de if desc_de else desc_en full_snippet = f"Objective: {objectives} Description: {description}" words = full_snippet.split() preview_word_count = 200 preview_text = " ".join(words[:preview_word_count]) remainder_text = " ".join(words[preview_word_count:]) st.write(preview_text) if remainder_text: with st.expander("Show more"): st.write(remainder_text) top_keywords = extract_top_keywords(res.payload['page_content'], top_n=5) if top_keywords: st.markdown(f"_{' · '.join(top_keywords)}_") # Format year range and budget info start_year_str = extract_year(start_year) if start_year else "Unknown" end_year_str = extract_year(end_year) if end_year else "Unknown" formatted_project_budget = format_currency(total_project) formatted_total_volume = format_currency(total_volume) # Compute matched country names (as before) try: c_list = json.loads(metadata.get('countries', "[]").replace("'", '"')) except json.JSONDecodeError: c_list = [] matched_countries = [] for code in c_list: if len(code) == 2: resolved_name = get_country_name(code.upper(), region_df) if resolved_name.upper() != code.upper(): matched_countries.append(resolved_name) # Compute CRS combined value crs_key = metadata.get("crs_key", "").strip() crs_value = metadata.get("crs_value", "").strip() crs_combined = f"{crs_key}: {crs_value}" if (crs_key or crs_value) else "Unknown" # Build the additional text with original details, then add Sector and contact. additional_text = ( f"**{', '.join(matched_countries)}**, commissioned by **{client_name}**\n" f"Projekt duration **{start_year_str}-{end_year_str}**\n" f"Budget: Project: **{formatted_project_budget}**, Total volume: **{formatted_total_volume}**\n" f"Country: **{', '.join(matched_countries)}**\n" f"Sector: **{crs_combined}**" ) contact = metadata.get("contact", "").strip() if contact and contact.lower() != "transparenz@giz.de": additional_text += f" | Contact: **{contact}**" st.markdown(additional_text) st.divider() # for i in results: # st.subheader(str(i.metadata['id'])+":"+str(i.metadata['title_main'])) # st.caption(f"Status:{str(i.metadata['status'])}, Country:{str(i.metadata['country_name'])}") # st.write(i.page_content) # st.divider()