annikwag's picture
Update appStore/prep_data.py
d448dcc verified
raw
history blame
7 kB
import pandas as pd
path_to_data = "./docStore/"
from appStore.prep_utils import create_chunks
from appStore.search import hybrid_search
from datetime import datetime
def convert_to_date(val):
try:
# If val is a string, first check if it represents a numeric value.
if isinstance(val, str):
val_str = val.strip()
try:
# Try converting the string to a float (i.e. it’s an epoch in string form)
num = float(val_str)
return datetime.utcfromtimestamp(num / 1000).strftime("%Y-%m-%d")
except ValueError:
# Not a numeric string; assume it's already a date string in "YYYY-MM-DD" format.
# Optionally, you can validate it:
datetime.strptime(val_str, "%Y-%m-%d")
return val_str
elif isinstance(val, (int, float)):
return datetime.utcfromtimestamp(val / 1000).strftime("%Y-%m-%d")
else:
return "Unknown"
except Exception:
return "Unknown"
def process_iati():
"""
this will read the iati files and create the chunks
"""
orgas_df = pd.read_csv(f"{path_to_data}iati_files/project_orgas.csv")
region_df = pd.read_csv(f"{path_to_data}iati_files/project_region.csv")
sector_df = pd.read_csv(f"{path_to_data}iati_files/project_sector.csv")
status_df = pd.read_csv(f"{path_to_data}iati_files/project_status.csv")
texts_df = pd.read_csv(f"{path_to_data}iati_files/project_texts.csv")
projects_df = pd.merge(orgas_df, region_df, on='iati_id', how='inner')
projects_df = pd.merge(projects_df, sector_df, on='iati_id', how='inner')
projects_df = pd.merge(projects_df, status_df, on='iati_id', how='inner')
projects_df = pd.merge(projects_df, texts_df, on='iati_id', how='inner')
projects_df = projects_df[projects_df.client.str.contains('bmz')].reset_index(drop=True)
projects_df.drop(columns= ['orga_abbreviation', 'client',
'orga_full_name', 'country',
'country_flag', 'crs_5_code', 'crs_3_code','country_code_list',
'sgd_pred_code','crs_5_name', 'crs_3_name', 'sgd_pred_str'], inplace=True)
#print(projects_df.columns)
projects_df['text_size'] = projects_df.apply(lambda x: len((x['title_main'] + x['description_main']).split()), axis=1)
projects_df['chunks'] = projects_df.apply(lambda x:create_chunks(x['title_main'] + x['description_main']),axis=1)
projects_df = projects_df.explode(column=['chunks'], ignore_index=True)
projects_df['source'] = 'IATI'
projects_df.rename(columns = {'iati_id':'id','iati_orga_id':'org'}, inplace=True)
return projects_df
def process_giz_worldwide():
"""
This function reads the new giz_worldwide file and prepares the data for embedding.
Adjustments made:
- Reads the file 'giz_worldwide_api_download_23_02_2025.json'
- Renames 'name.en' to 'project_name'
- Uses the 'merged_text' column for embedding the whole text (no chunking)
- Creates an empty 'url' column (since the new dataset has an empty URL)
- Renames 'country' to 'countries'
- Renames 'duration.project.start' to 'start_year' and 'duration.project.end' to 'end_year'
"""
# Read the new JSON file
giz_df = pd.read_json(f'{path_to_data}giz_worldwide/giz_worldwide_api_download_23_02_2025.json')
# Sample random rows for quick embeddings (seed set for reproducibility)
#giz_df = giz_df.sample(n=100, random_state=42)
# Reset the index so that create_documents can iterate using integer indices
giz_df = giz_df.reset_index(drop=True)
# Rename columns per new dataset requirements
giz_df = giz_df.rename(columns={
'name.en': 'project_name',
'country': 'countries',
'duration.project.start': 'start_year',
'duration.project.end': 'end_year'
})
giz_df['end_year'] = giz_df['end_year'].apply(convert_to_date)
# Create an empty 'url' column as the new dataset has an empty URL
giz_df['url'] = ''
# Compute text_size based on merged_text and assign full text to the 'chunks' column
giz_df['text_size'] = giz_df['merged_text'].apply(lambda text: len(text.split()) if isinstance(text, str) else 0)
# Use the full merged_text for embedding (no chunking).
# If downstream code expects a list, you could instead wrap it in a list:
# giz_df['chunks'] = giz_df['merged_text'].apply(lambda text: [text] if isinstance(text, str) else [])
giz_df['chunks'] = giz_df['merged_text']
giz_df['source'] = 'GIZ_WORLDWIDE'
return giz_df
# def process_giz_worldwide():
# """
# this will read the giz_worldwide files and create the chunks
# """
# giz_df = pd.read_json(f'{path_to_data}giz_worldwide/data_giz_website.json')
# giz_df = giz_df.rename(columns={'content':'project_description'})
# # Sample random rows for quick embeddings (seed set for reproducibility)
# giz_df = giz_df.sample(n=5, random_state=42)
# giz_df['text_size'] = giz_df.apply(lambda x: len((x['project_name'] + x['project_description']).split()), axis=1)
# giz_df['chunks'] = giz_df.apply(lambda x:create_chunks(x['project_name'] + x['project_description']),axis=1)
# print("initial df length:",len(giz_df))
# giz_df = giz_df.explode(column=['chunks'], ignore_index=True)
# print("new df length:",len(giz_df))
# print(giz_df.columns)
# #giz_df.drop(columns = ['filename', 'url', 'name', 'mail',
# # 'language', 'start_year', 'end_year','poli_trager'], inplace=True)
# giz_df['source'] = 'GIZ_WORLDWIDE'
# return giz_df
def remove_duplicates(results_list):
"""
Return a new list of results with duplicates removed,
based on 'url' in metadata.
"""
unique_results = []
seen_urls = set()
for r in results_list:
# Safely get the URL from metadata
url = r.payload['metadata'].get('id', None)
if url not in seen_urls:
seen_urls.add(url)
unique_results.append(r)
return unique_results
def extract_year(date_str):
try:
return str(datetime.strptime(date_str, "%Y-%m-%d").year)
except Exception:
return "Unknown"
def get_max_end_year(_client, collection_name):
"""
Return the maximum 'end_year' in the entire collection
so we can set the slider's max_value dynamically.
"""
# For safety, get a large pool of items
all_res = hybrid_search(_client, "", collection_name, limit=2000)
big_list = all_res[0] + all_res[1]
years = []
for r in big_list:
metadata = r.payload.get('metadata', {})
year_str = metadata.get('end_year', None)
if year_str:
try:
years.append(float(year_str))
except ValueError:
pass
if not years:
# fallback if no valid end years found
return 2030
return int(max(years))