import streamlit as st from .streamlit_utils import ( make_text_input ) from .streamlit_utils import ( make_text_area, make_radio, ) N_FIELDS_RATIONALE = 5 N_FIELDS_STARTING = 2 N_FIELDS = N_FIELDS_RATIONALE + \ N_FIELDS_STARTING def gem_page(): st.session_state.card_dict["gem"] = st.session_state.card_dict.get("gem", {}) with st.expander("Rationale", expanded=False): key_pref = ["gem", "rationale"] st.session_state.card_dict["gem"]["rationale"] = st.session_state.card_dict["gem"].get("rationale", {}) make_text_area( label="Contribution toward better generation evaluation", key_list=key_pref + ["contribution"], help="Describe briefly what makes this dataset an interesting target for NLG evaluations and why it is part of GEM", ) make_radio( label="Do other datasets for the high level task exist?", options=["no", "yes"], key_list=key_pref + ["sole-task-dataset"], help="for example, is this the only summarization dataset proposed in GEM", ) make_radio( label="Does this dataset cover other languages than other datasets for the same task?", options=["no", "yes"], key_list=key_pref + ["sole-language-task-dataset"], help="for example, is this the only summarization dataset proposed in GEM to have French text?", ) make_text_area( label="What else sets this dataset apart from other similar datasets in GEM?", key_list=key_pref + ["distinction-description"], help="Describe briefly for each similar dataset (same task/languages) what sets this one apart", ) make_text_area( label="What aspect of model ability can be measured with this dataset?", key_list=key_pref + ["model-ability"], help="What kind of abilities should a model exhibit that performs well on the task of this dataset (e.g., reasoning capability, morphological inflection)?", ) with st.expander("Getting Started", expanded=False): key_pref = ["gem", "starting"] st.session_state.card_dict["gem"]["starting"] = st.session_state.card_dict["gem"].get("starting", {}) make_text_area( label="Getting started with in-depth research on the task. Add relevant pointers to resources that researchers can consult when they want to get started digging deeper into the task.", key_list=key_pref + ["research-pointers"], help=" These can include blog posts, research papers, literature surveys, etc. You can also link to tutorials on the GEM website.", ) make_text_area( label="Technical terms used in this card and the dataset and their definitions", key_list=key_pref + ["technical-terms"], help="Provide a brief definition of technical terms that are unique to this dataset", ) def gem_summary(): total_filled = sum([len(dct) for dct in st.session_state.card_dict.get('gem', {}).values()]) with st.expander(f"Dataset in GEM Completion - {total_filled} of {N_FIELDS}", expanded=False): completion_markdown = "" completion_markdown += f"- **Overall competion:**\n - {total_filled} of {N_FIELDS} fields\n" completion_markdown += f"- **Sub-section - Rationale:**\n - {len(st.session_state.card_dict.get('gem', {}).get('rationale', {}))} of {N_FIELDS_RATIONALE} fields\n" completion_markdown += f"- **Sub-section - Getting Started:**\n - {len(st.session_state.card_dict.get('gem', {}).get('starting', {}))} of {N_FIELDS_STARTING} fields\n" st.markdown(completion_markdown)