import gradio as gr import jax import jax.numpy as jnp from diffusers import FlaxStableDiffusionPipeline from flax.jax_utils import replicate from flax.training.common_utils import shard from share_btn import community_icon_html, loading_icon_html, share_js DTYPE = jnp.float16 pipeline, pipeline_params = FlaxStableDiffusionPipeline.from_pretrained( "bguisard/stable-diffusion-nano-2-1", dtype=DTYPE, ) if DTYPE != jnp.float32: # There is a known issue with schedulers when loading from a pre trained # pipeline. We need the schedulers to always use float32. # See: https://github.com/huggingface/diffusers/issues/2155 scheduler, scheduler_params = FlaxPNDMScheduler.from_pretrained( pretrained_model_name_or_path="bguisard/stable-diffusion-nano-2-1", subfolder="scheduler", dtype=jnp.float32, ) pipeline_params["scheduler"] = scheduler_params pipeline.scheduler = scheduler def generate_image(prompt: str, negative_prompt: str = "", inference_steps: int = 25, prng_seed: int = 0, guidance_scale: float = 9): rng = jax.random.PRNGKey(int(prng_seed)) rng = jax.random.split(rng, jax.device_count()) p_params = replicate(pipeline_params) num_samples = 1 prompt_ids = pipeline.prepare_inputs([prompt] * num_samples) prompt_ids = shard(prompt_ids) if negative_prompt == "": images = pipeline( prompt_ids=prompt_ids, params=p_params, prng_seed=rng, height=128, width=128, num_inference_steps=int(inference_steps), guidance_scale=float(guidance_scale), jit=True, ).images else: neg_prompt_ids = pipeline.prepare_inputs( [negative_prompt] * num_samples) neg_prompt_ids = shard(neg_prompt_ids) images = pipeline( prompt_ids=prompt_ids, params=p_params, prng_seed=rng, height=128, width=128, num_inference_steps=int(inference_steps), neg_prompt_ids=neg_prompt_ids, guidance_scale=float(guidance_scale), jit=True, ).images images = images.reshape((num_samples,) + images.shape[-3:]) images = pipeline.numpy_to_pil(images) return images[0] examples = [ ["A watercolor painting of a bird"], ["A watercolor painting of an otter"] ] css = """ .gradio-container { font-family: 'IBM Plex Sans', sans-serif; max-width: 730px!important; margin: auto; padding-top: 1.5rem; } .gr-button { color: white; border-color: black; background: black; } input[type='range'] { accent-color: black; } .dark input[type='range'] { accent-color: #dfdfdf; } .container { max-width: 730px; margin: auto; padding-top: 1.5rem; } #gallery { min-height: 22rem; margin-bottom: 15px; margin-left: auto; margin-right: auto; border-bottom-right-radius: .5rem !important; border-bottom-left-radius: .5rem !important; } #gallery>div>.h-full { min-height: 20rem; } .details:hover { text-decoration: underline; } .gr-button { white-space: nowrap; } .gr-button:focus { border-color: rgb(147 197 253 / var(--tw-border-opacity)); outline: none; box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000); --tw-border-opacity: 1; --tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color); --tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color); --tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity)); --tw-ring-opacity: .5; } #advanced-btn { font-size: .7rem !important; line-height: 19px; cache_examples=True, postprocess=False) margin-top: 12px; margin-bottom: 12px; padding: 2px 8px; border-radius: 14px !important; } #advanced-options { display: none; margin-bottom: 20px; } .footer { margin-bottom: 45px; margin-top: 35px; text-align: center; border-bottom: 1px solid #e5e5e5; } .footer>p { font-size: .8rem; display: inline-block; padding: 0 10px; transform: translateY(10px); background: white; } .dark .footer { border-color: #303030; } .dark .footer>p { background: #0b0f19; } .acknowledgments h4{ margin: 1.25em 0 .25em 0; font-weight: bold; font-size: 115%; } .animate-spin { animation: spin 1s linear infinite; } @keyframes spin { from { transform: rotate(0deg); } to { transform: rotate(360deg); } } #share-btn-container { display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem; margin-top: 10px; margin-left: auto; #share-btn { all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;right:0; } #share-btn * { all: unset; } #share-btn-container div:nth-child(-n+2){ width: auto !important; min-height: 0px !important; } #share-btn-container .wrap { display: none !important; } .share_button { color:#6366f1!important; } .gr-form{ flex: 1 1 50%; border-top-right-radius: 0; border-bottom-right-radius: 0; } #prompt-text-input, #negative-prompt-text-input{padding: .45rem 0.625rem} .image_duplication{position: absolute; width: 100px; left: 50px} """ block = gr.Blocks(theme="gradio/soft",css=css) with block as demo: gr.HTML( """
Stable Diffusion Nano was built during the JAX/Diffusers community sprint 🧨 based on Stable Diffusion 2.1 and finetuned on 128x128 images for fast prototyping.