File size: 14,656 Bytes
c2f314c 0d29e9f 90816e9 1f33c8b 680c3bf b7d5b48 c2f314c 3d8eafa 0d29e9f 9b38713 3d8eafa 0d29e9f 3d8eafa 0d29e9f fedc156 c4c4b83 54771e9 a9057b2 c0c58ec 54771e9 3d8eafa e1ad05d 33ac871 e1ad05d fedc156 e1ad05d fedc156 e1ad05d 33ac871 e1ad05d fedc156 e1ad05d 4f05a50 33ac871 fedc156 418dc16 a452886 fedc156 b7d5b48 72d3b5f b7d5b48 42bdbc7 b7d5b48 fdceb6c b7d5b48 72d3b5f b7d5b48 72d3b5f b7d5b48 72d3b5f b7d5b48 0d29e9f 72d3b5f 0d29e9f 2f7b9b1 b7d5b48 fdceb6c b7d5b48 fdceb6c 72d3b5f b7d5b48 72d3b5f b7d5b48 72d3b5f b7d5b48 72d3b5f b7d5b48 72d3b5f b7d5b48 72d3b5f b7d5b48 9dac4fa a4f41ce 9dac4fa b7d5b48 72d3b5f 9aa9608 72d3b5f 4f05a50 72d3b5f b7d5b48 fedc156 b7d5b48 72d3b5f b7d5b48 fedc156 b7d5b48 fedc156 b7d5b48 72d3b5f b7d5b48 a452886 fedc156 72d3b5f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 |
import gradio as gr
import jax
import jax.numpy as jnp
from diffusers import FlaxPNDMScheduler, FlaxStableDiffusionPipeline
from flax.jax_utils import replicate
from flax.training.common_utils import shard
from share_btn import community_icon_html, loading_icon_html, share_js
DTYPE = jnp.float16
pipeline, pipeline_params = FlaxStableDiffusionPipeline.from_pretrained(
"bguisard/stable-diffusion-nano-2-1",
dtype=DTYPE,
)
if DTYPE != jnp.float32:
# There is a known issue with schedulers when loading from a pre trained
# pipeline. We need the schedulers to always use float32.
# See: https://github.com/huggingface/diffusers/issues/2155
scheduler, scheduler_params = FlaxPNDMScheduler.from_pretrained(
pretrained_model_name_or_path="bguisard/stable-diffusion-nano-2-1",
subfolder="scheduler",
dtype=jnp.float32,
)
pipeline_params["scheduler"] = scheduler_params
pipeline.scheduler = scheduler
def generate_image(prompt: str, negative_prompt: str = "", inference_steps: int = 25, prng_seed: int = 0, guidance_scale: float = 9):
rng = jax.random.PRNGKey(int(prng_seed))
rng = jax.random.split(rng, jax.device_count())
p_params = replicate(pipeline_params)
num_samples = 1
prompt_ids = pipeline.prepare_inputs([prompt] * num_samples)
prompt_ids = shard(prompt_ids)
if negative_prompt == "":
images = pipeline(
prompt_ids=prompt_ids,
params=p_params,
prng_seed=rng,
height=128,
width=128,
num_inference_steps=int(inference_steps),
guidance_scale=float(guidance_scale),
jit=True,
).images
else:
neg_prompt_ids = pipeline.prepare_inputs(
[negative_prompt] * num_samples)
neg_prompt_ids = shard(neg_prompt_ids)
images = pipeline(
prompt_ids=prompt_ids,
params=p_params,
prng_seed=rng,
height=128,
width=128,
num_inference_steps=int(inference_steps),
neg_prompt_ids=neg_prompt_ids,
guidance_scale=float(guidance_scale),
jit=True,
).images
images = images.reshape((num_samples,) + images.shape[-3:])
images = pipeline.numpy_to_pil(images)
return images[0]
examples = [
["A watercolor painting of a bird"],
["A watercolor painting of an otter"]
]
css = """
.gradio-container {
font-family: 'IBM Plex Sans', sans-serif;
max-width: 730px!important;
margin: auto;
padding-top: 1.5rem;
}
.gr-button {
color: white;
border-color: black;
background: black;
}
input[type='range'] {
accent-color: black;
}
.dark input[type='range'] {
accent-color: #dfdfdf;
}
.container {
max-width: 730px;
margin: auto;
padding-top: 1.5rem;
}
#gallery {
min-height: 22rem;
margin-bottom: 15px;
margin-left: auto;
margin-right: auto;
border-bottom-right-radius: .5rem !important;
border-bottom-left-radius: .5rem !important;
}
#gallery>div>.h-full {
min-height: 20rem;
}
.details:hover {
text-decoration: underline;
}
.gr-button {
white-space: nowrap;
}
.gr-button:focus {
border-color: rgb(147 197 253 / var(--tw-border-opacity));
outline: none;
box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000);
--tw-border-opacity: 1;
--tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);
--tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color);
--tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity));
--tw-ring-opacity: .5;
}
#advanced-btn {
font-size: .7rem !important;
line-height: 19px;
cache_examples=True,
postprocess=False)
margin-top: 12px;
margin-bottom: 12px;
padding: 2px 8px;
border-radius: 14px !important;
}
#advanced-options {
display: none;
margin-bottom: 20px;
}
.footer {
margin-bottom: 45px;
margin-top: 35px;
text-align: center;
border-bottom: 1px solid #e5e5e5;
}
.footer>p {
font-size: .8rem;
display: inline-block;
padding: 0 10px;
transform: translateY(10px);
background: white;
}
.dark .footer {
border-color: #303030;
}
.dark .footer>p {
background: #0b0f19;
}
.acknowledgments h4{
margin: 1.25em 0 .25em 0;
font-weight: bold;
font-size: 115%;
}
.animate-spin {
animation: spin 1s linear infinite;
}
@keyframes spin {
from {
transform: rotate(0deg);
}
to {
transform: rotate(360deg);
}
}
#share-btn-container {
display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
margin-top: 10px;
margin-left: auto;
#share-btn {
all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;right:0;
}
#share-btn * {
all: unset;
}
#share-btn-container div:nth-child(-n+2){
width: auto !important;
min-height: 0px !important;
}
#share-btn-container .wrap {
display: none !important;
}
.share_button {
color:#6366f1!important;
}
.gr-form{
flex: 1 1 50%; border-top-right-radius: 0; border-bottom-right-radius: 0;
}
#prompt-text-input, #negative-prompt-text-input{padding: .45rem 0.625rem}
.image_duplication{position: absolute; width: 100px; left: 50px}
"""
block = gr.Blocks(theme="gradio/soft",css=css)
with block as demo:
gr.HTML(
"""
<div style="text-align: center; margin: 0 auto;">
<div
style="
display: inline-flex;
align-items: center;
gap: 0.8rem;
font-size: 1.75rem;
"
>
<svg
width="0.65em"
height="0.65em"
viewBox="0 0 115 115"
fill="none"
xmlns="http://www.w3.org/2000/svg"
>
<rect width="23" height="23" fill="white"></rect>
<rect y="69" width="23" height="23" fill="white"></rect>
<rect x="23" width="23" height="23" fill="#AEAEAE"></rect>
<rect x="23" y="69" width="23" height="23" fill="#AEAEAE"></rect>
<rect x="46" width="23" height="23" fill="white"></rect>
<rect x="46" y="69" width="23" height="23" fill="white"></rect>
<rect x="69" width="23" height="23" fill="black"></rect>
<rect x="69" y="69" width="23" height="23" fill="black"></rect>
<rect x="92" width="23" height="23" fill="#D9D9D9"></rect>
<rect x="92" y="69" width="23" height="23" fill="#AEAEAE"></rect>
<rect x="115" y="46" width="23" height="23" fill="white"></rect>
<rect x="115" y="115" width="23" height="23" fill="white"></rect>
<rect x="115" y="69" width="23" height="23" fill="#D9D9D9"></rect>
<rect x="92" y="46" width="23" height="23" fill="#AEAEAE"></rect>
<rect x="92" y="115" width="23" height="23" fill="#AEAEAE"></rect>
<rect x="92" y="69" width="23" height="23" fill="white"></rect>
<rect x="69" y="46" width="23" height="23" fill="white"></rect>
<rect x="69" y="115" width="23" height="23" fill="white"></rect>
<rect x="69" y="69" width="23" height="23" fill="#D9D9D9"></rect>
<rect x="46" y="46" width="23" height="23" fill="black"></rect>
<rect x="46" y="115" width="23" height="23" fill="black"></rect>
<rect x="46" y="69" width="23" height="23" fill="black"></rect>
<rect x="23" y="46" width="23" height="23" fill="#D9D9D9"></rect>
<rect x="23" y="115" width="23" height="23" fill="#AEAEAE"></rect>
<rect x="23" y="69" width="23" height="23" fill="black"></rect>
</svg>
<h1 style="font-weight: 900; margin-bottom: 7px;margin-top:5px">
Stable Diffusion Nano Demo
</h1>
</div>
<p style="margin-bottom: 10px; font-size: 94%; line-height: 23px;">
Stable Diffusion Nano was built during the <a style="text-decoration: underline;" href="https://github.com/huggingface/community-events/tree/main/jax-controlnet-sprint">JAX/Diffusers community sprint 🧨</a> based on Stable Diffusion 2.1 and finetuned on 128x128 images for fast prototyping. <br>
</p>
</div>
"""
)
with gr.Group():
with gr.Box():
with gr.Row(elem_id="prompt-container").style(equal_height=True):
with gr.Column(scale=2):
prompt_input = gr.Textbox(
label="Enter your prompt",
max_lines=1,
placeholder="Enter your prompt",
elem_id="prompt-text-input",
show_label=False,
)
negative = gr.Textbox(
label="Enter your negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
elem_id="negative-prompt-text-input",
show_label=False,
)
btn = gr.Button("Generate image", label="Primary Button", variant="primary")
gallery = gr.Image(
label="Generated images", show_label=False, elem_id="gallery"
)
with gr.Row():
with gr.Column(scale=2):
with gr.Accordion("Advanced settings"):
seed_input = gr.inputs.Number(default=0, label="Seed")
inf_steps_input = gr.inputs.Slider(
minimum=1, maximum=100, default=25, step=1, label="Inference Steps"
)
guidance_scale = gr.inputs.Slider(
label="Guidance Scale", minimum=0, maximum=50, default=9, step=0.1
)
with gr.Column(scale=1):
# advanced_button = gr.Button("Advanced options", elem_id="advanced-btn")
ex = gr.Examples(examples=examples,
fn=generate_image,
inputs=[prompt_input, negative,inf_steps_input, seed_input, guidance_scale],
outputs=[gallery],
cache_examples=False)
ex.dataset.headers = [""]
share_button = gr.Button("Share to community",elem_classes="share_button")
negative.submit(generate_image, inputs=[
prompt_input, negative, inf_steps_input, seed_input, guidance_scale], outputs=[gallery], postprocess=False)
prompt_input.submit(generate_image, inputs=[
prompt_input, negative, inf_steps_input, seed_input, guidance_scale], outputs=[gallery], postprocess=False)
btn.click(generate_image, inputs=[prompt_input, negative, inf_steps_input,
seed_input, guidance_scale], outputs=[gallery], postprocess=False)
share_button.click(
None,
[],
[],
_js=share_js,
)
gr.Markdown("Model by Stable Diffusion Nano Team",elem_classes="footer")
with gr.Accordion(label="License", open=False):
gr.HTML(
"""
<div class="acknowledgments">
<p><h4>LICENSE</h4>
The model is licensed with a <a href="https://huggingface.co/stabilityai/stable-diffusion-2/blob/main/LICENSE-MODEL" style="text-decoration: underline;" target="_blank">CreativeML OpenRAIL++</a> license. The authors claim no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in this license. The license forbids you from sharing any content that violates any laws, produce any harm to a person, disseminate any personal information that would be meant for harm, spread misinformation and target vulnerable groups. For the full list of restrictions please <a href="https://huggingface.co/spaces/CompVis/stable-diffusion-license" target="_blank" style="text-decoration: underline;" target="_blank">read the license</a></p>
<p><h4>Biases and content acknowledgment</h4>
Despite how impressive being able to turn text into image is, beware to the fact that this model may output content that reinforces or exacerbates societal biases, as well as realistic faces, pornography and violence. The model was trained on the <a href="https://huggingface.co/datasets/laion/laion2B-en-aesthetic" style="text-decoration: underline;" target="_blank">LAION-2B Aesthetic dataset</a>, which scraped non-curated image-text-pairs from the internet (the exception being the removal of illegal content) and is meant for research purposes. You can read more in the <a href="https://huggingface.co/bguisard/stable-diffusion-nano-2-1" style="text-decoration: underline;" target="_blank">model card</a></p>
</div>
"""
)
demo.queue(concurrency_count=10)
demo.launch()
|