Futuresony commited on
Commit
240a78d
·
verified ·
1 Parent(s): b262e01

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +54 -32
app.py CHANGED
@@ -1,42 +1,64 @@
1
- from flask import Flask, request, jsonify
2
- from transformers import AutoTokenizer, AutoModelForCausalLM
3
- import torch
4
 
5
- # Initialize the Flask app
6
- app = Flask(__name__)
 
 
7
 
8
- # Load the model and tokenizer
9
- MODEL_PATH = "Futuresony/future_ai_12_10_2024.gguf" # Replace with your Hugging Face model name or local path
10
- device = "cuda" if torch.cuda.is_available() else "cpu"
11
 
12
- # Load adapter-based model
13
- print("Loading model...")
14
- tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, config="tokenizer_config.json")
 
 
 
 
 
 
15
 
16
- model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, torch_dtype=torch.float16 if device == "cuda" else None)
17
- model.to(device)
18
- print("Model loaded successfully.")
 
 
19
 
20
- @app.route("/generate", methods=["POST"])
21
- def generate_text():
22
- try:
23
- # Extract input from JSON request
24
- data = request.json
25
- prompt = data.get("prompt", "")
26
- max_length = data.get("max_length", 100)
27
 
28
- if not prompt:
29
- return jsonify({"error": "Prompt is required"}), 400
30
 
31
- # Generate text using the model
32
- inputs = tokenizer(prompt, return_tensors="pt").to(device)
33
- outputs = model.generate(**inputs, max_length=max_length)
34
- generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
 
36
- return jsonify({"generated_text": generated_text})
37
- except Exception as e:
38
- return jsonify({"error": str(e)}), 500
39
 
40
  if __name__ == "__main__":
41
- app.run(debug=True, host="0.0.0.0", port=5000)
42
-
 
1
+ import gradio as gr
2
+ from huggingface_hub import InferenceClient
 
3
 
4
+ """
5
+ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
+ """
7
+ client = InferenceClient("Futuresony/future_ai_12_10_2024.gguf")
8
 
 
 
 
9
 
10
+ def respond(
11
+ message,
12
+ history: list[tuple[str, str]],
13
+ system_message,
14
+ max_tokens,
15
+ temperature,
16
+ top_p,
17
+ ):
18
+ messages = [{"role": "system", "content": system_message}]
19
 
20
+ for val in history:
21
+ if val[0]:
22
+ messages.append({"role": "user", "content": val[0]})
23
+ if val[1]:
24
+ messages.append({"role": "assistant", "content": val[1]})
25
 
26
+ messages.append({"role": "user", "content": message})
 
 
 
 
 
 
27
 
28
+ response = ""
 
29
 
30
+ for message in client.chat_completion(
31
+ messages,
32
+ max_tokens=max_tokens,
33
+ stream=True,
34
+ temperature=temperature,
35
+ top_p=top_p,
36
+ ):
37
+ token = message.choices[0].delta.content
38
+
39
+ response += token
40
+ yield response
41
+
42
+
43
+ """
44
+ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
+ """
46
+ demo = gr.ChatInterface(
47
+ respond,
48
+ additional_inputs=[
49
+ gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
+ gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
+ gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
+ gr.Slider(
53
+ minimum=0.1,
54
+ maximum=1.0,
55
+ value=0.95,
56
+ step=0.05,
57
+ label="Top-p (nucleus sampling)",
58
+ ),
59
+ ],
60
+ )
61
 
 
 
 
62
 
63
  if __name__ == "__main__":
64
+ demo.launch()