Futuresony commited on
Commit
05d1f28
·
verified ·
1 Parent(s): 60fce52

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -60
app.py CHANGED
@@ -1,65 +1,21 @@
1
- import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("Futuresony/future_ai_12_10_2024.gguf")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
 
 
 
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
 
 
62
 
63
- if __name__ == "__main__":
64
- demo.launch()
65
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
 
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer
3
+ import gradio as gr
 
 
 
 
 
 
 
 
 
 
 
 
 
4
 
5
+ checkpoint = "Futuresony/future_ai_12_10_2024.gguf"
6
+ device = "cpu" # "cuda" or "cpu"
7
+ tokenizer = AutoTokenizer.from_pretrained(checkpoint)
8
+ model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
9
 
10
+ def predict(message, history):
11
+ history.append({"role": "user", "content": message})
12
+ input_text = tokenizer.apply_chat_template(history, tokenize=False)
13
+ inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
14
+ outputs = model.generate(inputs, max_new_tokens=100, temperature=0.2, top_p=0.9, do_sample=True)
15
+ decoded = tokenizer.decode(outputs[0])
16
+ response = decoded.split("<|im_start|>assistant\n")[-1].split("<|im_end|>")[0]
17
+ return response
 
 
 
 
 
 
 
 
 
 
18
 
19
+ demo = gr.ChatInterface(predict, type="messages")
20
 
21
+ demo.launch()