Spaces:
Runtime error
Runtime error
import gradio as gr | |
import os | |
import faiss | |
import torch | |
from huggingface_hub import InferenceClient, hf_hub_download | |
from sentence_transformers import SentenceTransformer | |
import logging | |
# Set up logging | |
logging.basicConfig(level=logging.INFO) | |
# Hugging Face Credentials | |
HF_REPO = "Futuresony/future_ai_12_10_2024.gguf" # Your model repo | |
HF_FAISS_REPO = "Futuresony/future_ai_12_10_2024.gguf" # Your FAISS repo | |
HF_TOKEN = os.getenv('HUGGINGFACEHUB_API_TOKEN') # API token from env | |
# Load FAISS Index | |
faiss_index_path = hf_hub_download( | |
repo_id=HF_FAISS_REPO, | |
filename="asa_faiss.index", | |
repo_type="model", | |
token=HF_TOKEN | |
) | |
faiss_index = faiss.read_index(faiss_index_path) | |
# Load Sentence Transformer for embedding queries | |
embed_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2") | |
# Hugging Face Model Client | |
client = InferenceClient( | |
model=HF_REPO, | |
token=HF_TOKEN | |
) | |
# Function to retrieve relevant context from FAISS | |
def retrieve_context(query, top_k=3): | |
"""Retrieve relevant past knowledge using FAISS""" | |
query_embedding = embed_model.encode([query], convert_to_tensor=True).cpu().numpy() | |
distances, indices = faiss_index.search(query_embedding, top_k) | |
# Convert indices to retrieved text (simulate as FAISS only returns IDs) | |
retrieved_context = "\n".join([f"Context {i+1}: Retrieved data for index {idx}" for i, idx in enumerate(indices[0])]) | |
return retrieved_context | |
# Function to format input in Alpaca style | |
def format_alpaca_prompt(user_input, system_prompt, history): | |
"""Formats input in Alpaca/LLaMA style""" | |
retrieved_context = retrieve_context(user_input) # Retrieve past knowledge | |
history_str = "\n".join([f"### Instruction:\n{h[0]}\n### Response:\n{h[1]}" for h in history]) | |
prompt = f"""{system_prompt} | |
{history_str} | |
### Instruction: | |
{user_input} | |
### Retrieved Context: | |
{retrieved_context} | |
### Response: | |
""" | |
return prompt | |
# Chatbot response function | |
def respond(message, history, system_message, max_tokens, temperature, top_p): | |
formatted_prompt = format_alpaca_prompt(message, system_message, history) | |
response = client.text_generation( | |
formatted_prompt, | |
max_new_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
) | |
# Extract only the response | |
cleaned_response = response.split("### Response:")[-1].strip() | |
history.append((message, cleaned_response)) # Update chat history | |
yield cleaned_response # Output only the answer | |
# Gradio Chat Interface | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a helpful AI.", label="System message"), | |
gr.Slider(minimum=1, maximum=250, value=128, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.9, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.99, step=0.01, label="Top-p (nucleus sampling)"), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |