import torch import torch.nn.functional as F def tpr_loss(disc_real_outputs, disc_generated_outputs, tau): loss = 0 for dr, dg in zip(disc_real_outputs, disc_generated_outputs): m_DG = torch.median((dr - dg)) L_rel = torch.mean((((dr - dg) - m_DG) ** 2)[dr < dg + m_DG]) loss += tau - F.relu(tau - L_rel) return loss def mel_loss(real_speech, generated_speech, mel_transforms): loss = 0 for transform in mel_transforms: mel_r = transform(real_speech) mel_g = transform(generated_speech) loss += F.l1_loss(mel_g, mel_r) return loss