# Copyright (c) 2021 Mobvoi Inc. (authors: Binbin Zhang) # 2024 Alibaba Inc (authors: Xiang Lyu) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import torchaudio import logging logging.getLogger('matplotlib').setLevel(logging.WARNING) logging.basicConfig(level=logging.DEBUG, format='%(asctime)s %(levelname)s %(message)s') def read_lists(list_file): lists = [] with open(list_file, 'r', encoding='utf8') as fin: for line in fin: lists.append(line.strip()) return lists def read_json_lists(list_file): lists = read_lists(list_file) results = {} for fn in lists: with open(fn, 'r', encoding='utf8') as fin: results.update(json.load(fin)) return results def load_wav(wav, target_sr): # speech, sample_rate = torchaudio.load(wav) # speech = speech.mean(dim=0, keepdim=True) # if sample_rate != target_sr: # assert sample_rate > target_sr, 'wav sample rate {} must be greater than {}'.format(sample_rate, target_sr) # speech = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=target_sr)(speech) import librosa, torch speech, _ = librosa.load(path=wav, sr=target_sr) speech = torch.from_numpy(speech).unsqueeze(dim=0) return speech