import torch import torch.nn as nn from torch.nn.utils import weight_norm from typing import List, Optional, Tuple from einops import rearrange from torchaudio.transforms import Spectrogram class MultipleDiscriminator(nn.Module): def __init__( self, mpd: nn.Module, mrd: nn.Module ): super().__init__() self.mpd = mpd self.mrd = mrd def forward(self, y: torch.Tensor, y_hat: torch.Tensor): y_d_rs, y_d_gs, fmap_rs, fmap_gs = [], [], [], [] this_y_d_rs, this_y_d_gs, this_fmap_rs, this_fmap_gs = self.mpd(y.unsqueeze(dim=1), y_hat.unsqueeze(dim=1)) y_d_rs += this_y_d_rs y_d_gs += this_y_d_gs fmap_rs += this_fmap_rs fmap_gs += this_fmap_gs this_y_d_rs, this_y_d_gs, this_fmap_rs, this_fmap_gs = self.mrd(y, y_hat) y_d_rs += this_y_d_rs y_d_gs += this_y_d_gs fmap_rs += this_fmap_rs fmap_gs += this_fmap_gs return y_d_rs, y_d_gs, fmap_rs, fmap_gs class MultiResolutionDiscriminator(nn.Module): def __init__( self, fft_sizes: Tuple[int, ...] = (2048, 1024, 512), num_embeddings: Optional[int] = None, ): """ Multi-Resolution Discriminator module adapted from https://github.com/descriptinc/descript-audio-codec. Additionally, it allows incorporating conditional information with a learned embeddings table. Args: fft_sizes (tuple[int]): Tuple of window lengths for FFT. Defaults to (2048, 1024, 512). num_embeddings (int, optional): Number of embeddings. None means non-conditional discriminator. Defaults to None. """ super().__init__() self.discriminators = nn.ModuleList( [DiscriminatorR(window_length=w, num_embeddings=num_embeddings) for w in fft_sizes] ) def forward( self, y: torch.Tensor, y_hat: torch.Tensor, bandwidth_id: torch.Tensor = None ) -> Tuple[List[torch.Tensor], List[torch.Tensor], List[List[torch.Tensor]], List[List[torch.Tensor]]]: y_d_rs = [] y_d_gs = [] fmap_rs = [] fmap_gs = [] for d in self.discriminators: y_d_r, fmap_r = d(x=y, cond_embedding_id=bandwidth_id) y_d_g, fmap_g = d(x=y_hat, cond_embedding_id=bandwidth_id) y_d_rs.append(y_d_r) fmap_rs.append(fmap_r) y_d_gs.append(y_d_g) fmap_gs.append(fmap_g) return y_d_rs, y_d_gs, fmap_rs, fmap_gs class DiscriminatorR(nn.Module): def __init__( self, window_length: int, num_embeddings: Optional[int] = None, channels: int = 32, hop_factor: float = 0.25, bands: Tuple[Tuple[float, float], ...] = ((0.0, 0.1), (0.1, 0.25), (0.25, 0.5), (0.5, 0.75), (0.75, 1.0)), ): super().__init__() self.window_length = window_length self.hop_factor = hop_factor self.spec_fn = Spectrogram( n_fft=window_length, hop_length=int(window_length * hop_factor), win_length=window_length, power=None ) n_fft = window_length // 2 + 1 bands = [(int(b[0] * n_fft), int(b[1] * n_fft)) for b in bands] self.bands = bands convs = lambda: nn.ModuleList( [ weight_norm(nn.Conv2d(2, channels, (3, 9), (1, 1), padding=(1, 4))), weight_norm(nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))), weight_norm(nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))), weight_norm(nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))), weight_norm(nn.Conv2d(channels, channels, (3, 3), (1, 1), padding=(1, 1))), ] ) self.band_convs = nn.ModuleList([convs() for _ in range(len(self.bands))]) if num_embeddings is not None: self.emb = torch.nn.Embedding(num_embeddings=num_embeddings, embedding_dim=channels) torch.nn.init.zeros_(self.emb.weight) self.conv_post = weight_norm(nn.Conv2d(channels, 1, (3, 3), (1, 1), padding=(1, 1))) def spectrogram(self, x): # Remove DC offset x = x - x.mean(dim=-1, keepdims=True) # Peak normalize the volume of input audio x = 0.8 * x / (x.abs().max(dim=-1, keepdim=True)[0] + 1e-9) x = self.spec_fn(x) x = torch.view_as_real(x) x = rearrange(x, "b f t c -> b c t f") # Split into bands x_bands = [x[..., b[0]: b[1]] for b in self.bands] return x_bands def forward(self, x: torch.Tensor, cond_embedding_id: torch.Tensor = None): x_bands = self.spectrogram(x) fmap = [] x = [] for band, stack in zip(x_bands, self.band_convs): for i, layer in enumerate(stack): band = layer(band) band = torch.nn.functional.leaky_relu(band, 0.1) if i > 0: fmap.append(band) x.append(band) x = torch.cat(x, dim=-1) if cond_embedding_id is not None: emb = self.emb(cond_embedding_id) h = (emb.view(1, -1, 1, 1) * x).sum(dim=1, keepdims=True) else: h = 0 x = self.conv_post(x) fmap.append(x) x += h return x, fmap