Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,12 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
import spacy
|
4 |
-
import
|
5 |
import json
|
6 |
import requests
|
7 |
|
8 |
-
# Initialize models
|
9 |
-
nlp = spacy.load("en_core_web_sm")
|
10 |
-
language_tool = language_tool_python.LanguageTool('en-US')
|
11 |
spell_checker = pipeline("text2text-generation", model="oliverguhr/spelling-correction-english-base")
|
12 |
|
13 |
def preprocess_and_forward(text: str) -> str:
|
@@ -43,24 +42,22 @@ def preprocess_and_forward(text: str) -> str:
|
|
43 |
|
44 |
def preprocess_text(text: str):
|
45 |
result = {
|
46 |
-
"
|
47 |
"entities": [],
|
48 |
-
"tags": []
|
49 |
-
"spell_suggestions": []
|
50 |
}
|
51 |
|
52 |
-
#
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
})
|
60 |
|
61 |
# Transformer-based spell check
|
62 |
spell_checked = spell_checker(text, max_length=512)[0]['generated_text']
|
63 |
-
if spell_checked != text:
|
64 |
result["spell_suggestions"].append({
|
65 |
"original": text,
|
66 |
"corrected": spell_checked
|
@@ -70,7 +67,7 @@ def preprocess_text(text: str):
|
|
70 |
doc = nlp(text)
|
71 |
result["entities"] = [{"text": ent.text, "label": ent.label_} for ent in doc.ents]
|
72 |
|
73 |
-
# Extract potential tags
|
74 |
result["tags"] = [token.text for token in doc if token.text.startswith(('#', '@'))]
|
75 |
|
76 |
return text, result
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
import spacy
|
4 |
+
from textblob import TextBlob
|
5 |
import json
|
6 |
import requests
|
7 |
|
8 |
+
# Initialize models
|
9 |
+
nlp = spacy.load("en_core_web_sm") # Use "en_core_web_trf" if more accuracy is needed
|
|
|
10 |
spell_checker = pipeline("text2text-generation", model="oliverguhr/spelling-correction-english-base")
|
11 |
|
12 |
def preprocess_and_forward(text: str) -> str:
|
|
|
42 |
|
43 |
def preprocess_text(text: str):
|
44 |
result = {
|
45 |
+
"spell_suggestions": [],
|
46 |
"entities": [],
|
47 |
+
"tags": []
|
|
|
48 |
}
|
49 |
|
50 |
+
# Basic spell checking using TextBlob
|
51 |
+
corrected_text = str(TextBlob(text).correct())
|
52 |
+
if corrected_text != text:
|
53 |
+
result["spell_suggestions"].append({
|
54 |
+
"original": text,
|
55 |
+
"corrected": corrected_text
|
56 |
+
})
|
|
|
57 |
|
58 |
# Transformer-based spell check
|
59 |
spell_checked = spell_checker(text, max_length=512)[0]['generated_text']
|
60 |
+
if spell_checked != text and spell_checked != corrected_text:
|
61 |
result["spell_suggestions"].append({
|
62 |
"original": text,
|
63 |
"corrected": spell_checked
|
|
|
67 |
doc = nlp(text)
|
68 |
result["entities"] = [{"text": ent.text, "label": ent.label_} for ent in doc.ents]
|
69 |
|
70 |
+
# Extract potential tags (hashtags, mentions, etc.)
|
71 |
result["tags"] = [token.text for token in doc if token.text.startswith(('#', '@'))]
|
72 |
|
73 |
return text, result
|