Spaces:
Runtime error
Runtime error
first version with emotions
Browse files- .gitignore +161 -0
- app.py +70 -0
- data.py +34 -52
- data/lyrics.json +0 -0
- data/lyrics_with_spotify_url.json +0 -0
- data/lyrics_with_spotify_url_and_summary.json +1 -0
- data/spotify_disney_songs.json +0 -0
- embeddings.npy +0 -0
- names.py +2 -0
- playground.py +60 -0
- prompts/bot.prompt +9 -0
- prompts/bot_with_summary.prompt +11 -0
- prompts/summary.prompt +7 -0
- requirements.txt +11 -0
- scrape.py +97 -0
- scripts/create_one_sentence_summary.py +36 -0
- scripts/keep_only_lyrics_on_spotify.py +52 -0
- temp.ipynb +248 -0
.gitignore
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
disney-lyrics/
|
2 |
+
# Byte-compiled / optimized / DLL files
|
3 |
+
__pycache__/
|
4 |
+
*.py[cod]
|
5 |
+
*$py.class
|
6 |
+
|
7 |
+
# C extensions
|
8 |
+
*.so
|
9 |
+
|
10 |
+
# Distribution / packaging
|
11 |
+
.Python
|
12 |
+
build/
|
13 |
+
develop-eggs/
|
14 |
+
dist/
|
15 |
+
downloads/
|
16 |
+
eggs/
|
17 |
+
.eggs/
|
18 |
+
lib/
|
19 |
+
lib64/
|
20 |
+
parts/
|
21 |
+
sdist/
|
22 |
+
var/
|
23 |
+
wheels/
|
24 |
+
share/python-wheels/
|
25 |
+
*.egg-info/
|
26 |
+
.installed.cfg
|
27 |
+
*.egg
|
28 |
+
MANIFEST
|
29 |
+
|
30 |
+
# PyInstaller
|
31 |
+
# Usually these files are written by a python script from a template
|
32 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
33 |
+
*.manifest
|
34 |
+
*.spec
|
35 |
+
|
36 |
+
# Installer logs
|
37 |
+
pip-log.txt
|
38 |
+
pip-delete-this-directory.txt
|
39 |
+
|
40 |
+
# Unit test / coverage reports
|
41 |
+
htmlcov/
|
42 |
+
.tox/
|
43 |
+
.nox/
|
44 |
+
.coverage
|
45 |
+
.coverage.*
|
46 |
+
.cache
|
47 |
+
nosetests.xml
|
48 |
+
coverage.xml
|
49 |
+
*.cover
|
50 |
+
*.py,cover
|
51 |
+
.hypothesis/
|
52 |
+
.pytest_cache/
|
53 |
+
cover/
|
54 |
+
|
55 |
+
# Translations
|
56 |
+
*.mo
|
57 |
+
*.pot
|
58 |
+
|
59 |
+
# Django stuff:
|
60 |
+
*.log
|
61 |
+
local_settings.py
|
62 |
+
db.sqlite3
|
63 |
+
db.sqlite3-journal
|
64 |
+
|
65 |
+
# Flask stuff:
|
66 |
+
instance/
|
67 |
+
.webassets-cache
|
68 |
+
|
69 |
+
# Scrapy stuff:
|
70 |
+
.scrapy
|
71 |
+
|
72 |
+
# Sphinx documentation
|
73 |
+
docs/_build/
|
74 |
+
|
75 |
+
# PyBuilder
|
76 |
+
.pybuilder/
|
77 |
+
target/
|
78 |
+
|
79 |
+
# Jupyter Notebook
|
80 |
+
.ipynb_checkpoints
|
81 |
+
|
82 |
+
# IPython
|
83 |
+
profile_default/
|
84 |
+
ipython_config.py
|
85 |
+
|
86 |
+
# pyenv
|
87 |
+
# For a library or package, you might want to ignore these files since the code is
|
88 |
+
# intended to run in multiple environments; otherwise, check them in:
|
89 |
+
# .python-version
|
90 |
+
|
91 |
+
# pipenv
|
92 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
93 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
94 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
95 |
+
# install all needed dependencies.
|
96 |
+
#Pipfile.lock
|
97 |
+
|
98 |
+
# poetry
|
99 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
100 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
101 |
+
# commonly ignored for libraries.
|
102 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
103 |
+
#poetry.lock
|
104 |
+
|
105 |
+
# pdm
|
106 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
107 |
+
#pdm.lock
|
108 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
109 |
+
# in version control.
|
110 |
+
# https://pdm.fming.dev/#use-with-ide
|
111 |
+
.pdm.toml
|
112 |
+
|
113 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
114 |
+
__pypackages__/
|
115 |
+
|
116 |
+
# Celery stuff
|
117 |
+
celerybeat-schedule
|
118 |
+
celerybeat.pid
|
119 |
+
|
120 |
+
# SageMath parsed files
|
121 |
+
*.sage.py
|
122 |
+
|
123 |
+
# Environments
|
124 |
+
.env
|
125 |
+
.venv
|
126 |
+
env/
|
127 |
+
venv/
|
128 |
+
ENV/
|
129 |
+
env.bak/
|
130 |
+
venv.bak/
|
131 |
+
|
132 |
+
# Spyder project settings
|
133 |
+
.spyderproject
|
134 |
+
.spyproject
|
135 |
+
|
136 |
+
# Rope project settings
|
137 |
+
.ropeproject
|
138 |
+
|
139 |
+
# mkdocs documentation
|
140 |
+
/site
|
141 |
+
|
142 |
+
# mypy
|
143 |
+
.mypy_cache/
|
144 |
+
.dmypy.json
|
145 |
+
dmypy.json
|
146 |
+
|
147 |
+
# Pyre type checker
|
148 |
+
.pyre/
|
149 |
+
|
150 |
+
# pytype static type analyzer
|
151 |
+
.pytype/
|
152 |
+
|
153 |
+
# Cython debug symbols
|
154 |
+
cython_debug/
|
155 |
+
|
156 |
+
# PyCharm
|
157 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
158 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
159 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
160 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
161 |
+
#.idea/
|
app.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
|
3 |
+
import streamlit as st
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
from langchain.chains import LLMChain
|
6 |
+
from langchain.prompts import PromptTemplate
|
7 |
+
|
8 |
+
load_dotenv()
|
9 |
+
import os
|
10 |
+
|
11 |
+
from langchain.chat_models import ChatOpenAI
|
12 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
13 |
+
|
14 |
+
from data import load_db
|
15 |
+
from names import DATASET_ID, MODEL_ID
|
16 |
+
|
17 |
+
@st.cache_resource
|
18 |
+
def init():
|
19 |
+
embeddings = OpenAIEmbeddings(model=MODEL_ID)
|
20 |
+
dataset_path = f"hub://{os.environ['ACTIVELOOP_ORG_ID']}/{DATASET_ID}"
|
21 |
+
|
22 |
+
db = load_db(
|
23 |
+
dataset_path,
|
24 |
+
embedding_function=embeddings,
|
25 |
+
token=os.environ["ACTIVELOOP_TOKEN"],
|
26 |
+
org_id=os.environ["ACTIVELOOP_ORG_ID"],
|
27 |
+
read_only=True,
|
28 |
+
)
|
29 |
+
|
30 |
+
prompt = PromptTemplate(
|
31 |
+
input_variables=["content"],
|
32 |
+
template=Path("prompts/bot.prompt").read_text(),
|
33 |
+
)
|
34 |
+
|
35 |
+
llm = ChatOpenAI(temperature=0.7)
|
36 |
+
|
37 |
+
chain = LLMChain(llm=llm, prompt=prompt)
|
38 |
+
|
39 |
+
return db, chain
|
40 |
+
|
41 |
+
db, chain = init()
|
42 |
+
|
43 |
+
st.title("Disney song for you")
|
44 |
+
|
45 |
+
text_input = st.text_input(
|
46 |
+
label="How are you feeling today?",
|
47 |
+
placeholder="I am ready to rock and rool!",
|
48 |
+
)
|
49 |
+
|
50 |
+
clicked = st.button("Click me")
|
51 |
+
placeholder_emotions = st.empty()
|
52 |
+
placeholder = st.empty()
|
53 |
+
|
54 |
+
def get_emotions(user_input):
|
55 |
+
emotions = chain.run(content=user_input)
|
56 |
+
print(f"Emotions: {emotions}")
|
57 |
+
matches = db.similarity_search_with_score(emotions, distance_metric="cos")
|
58 |
+
print(matches)
|
59 |
+
doc, score = matches[0]
|
60 |
+
iframes_html = ""
|
61 |
+
with placeholder_emotions:
|
62 |
+
st.write(emotions)
|
63 |
+
with placeholder:
|
64 |
+
embed_url = doc.metadata["embed_url"]
|
65 |
+
iframe_html = f'<iframe src="{embed_url}" style="border:0"> </iframe>'
|
66 |
+
st.components.v1.html(f"<div style='display:flex;flex-direction:column'>{iframe_html}</div>")
|
67 |
+
|
68 |
+
|
69 |
+
if clicked:
|
70 |
+
get_emotions(text_input)
|
data.py
CHANGED
@@ -1,66 +1,48 @@
|
|
|
|
1 |
|
2 |
-
|
3 |
-
|
|
|
4 |
|
5 |
-
import
|
6 |
-
import
|
7 |
-
from
|
8 |
|
9 |
-
from
|
10 |
|
11 |
-
class Lyric(TypedDict):
|
12 |
-
name: str
|
13 |
-
text: str
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
|
|
|
|
|
19 |
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
|
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
soup = BeautifulSoup(html, 'html.parser')
|
27 |
-
table = soup.find('table', {'class': 'songs'})
|
28 |
-
names_and_urls = None
|
29 |
-
if table:
|
30 |
-
links = table.find_all('a')
|
31 |
-
names_and_urls = []
|
32 |
-
for link in links:
|
33 |
-
names_and_urls.append((link.text, f"{URL}/{link.get('href')}"))
|
34 |
-
return names_and_urls
|
35 |
|
36 |
-
|
37 |
-
async with session.get(url) as response:
|
38 |
-
html = await response.text()
|
39 |
-
soup = BeautifulSoup(html, 'html.parser')
|
40 |
-
div = soup.find('div', {'id': 'cnt'}).find('div', {'class': 'main'})
|
41 |
-
paragraphs = div.find_all('p')
|
42 |
-
text = ""
|
43 |
-
for p in paragraphs:
|
44 |
-
text += p.text
|
45 |
-
return text
|
46 |
|
47 |
|
|
|
|
|
|
|
48 |
|
49 |
-
async def get_movie_names_and_urls(session: aiohttp.ClientSession) -> List[Tuple[str, str]]:
|
50 |
-
async with session.get(URL) as response:
|
51 |
-
html = await response.text()
|
52 |
-
soup = BeautifulSoup(html, 'html.parser')
|
53 |
-
links = soup.find('div', {'id': 'cnt'}).find('div', {'class': 'main'}).find_all('a')
|
54 |
-
movie_names_and_urls = [(link.text, f"{URL}/{link.get('href')}") for link in links]
|
55 |
-
return movie_names_and_urls
|
56 |
-
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
async with aiohttp.ClientSession() as session:
|
62 |
-
names_and_urls = await get_movie_names_and_urls(session)
|
63 |
-
data = await asyncio.gather(*[asyncio.create_task(get_lyrics_urls_from_movie_url(names, url, session)) for (names, url) in names_and_urls])
|
64 |
-
|
65 |
-
loop = asyncio.get_event_loop()
|
66 |
-
loop.run_until_complete(main())
|
|
|
1 |
+
from dotenv import load_dotenv
|
2 |
|
3 |
+
load_dotenv()
|
4 |
+
import json
|
5 |
+
import os
|
6 |
|
7 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
8 |
+
from langchain.llms import OpenAI
|
9 |
+
from langchain.vectorstores import DeepLake
|
10 |
|
11 |
+
from names import DATASET_ID, MODEL_ID
|
12 |
|
|
|
|
|
|
|
13 |
|
14 |
+
def create_db(dataset_path: str, json_filepath: str) -> DeepLake:
|
15 |
+
with open(json_filepath, "r") as f:
|
16 |
+
data = json.load(f)
|
17 |
|
18 |
+
texts = []
|
19 |
+
metadatas = []
|
20 |
|
21 |
+
for movie, lyrics in data.items():
|
22 |
+
for lyric in lyrics:
|
23 |
+
texts.append(lyric["text"])
|
24 |
+
metadatas.append(
|
25 |
+
{
|
26 |
+
"movie": movie,
|
27 |
+
"name": lyric["name"],
|
28 |
+
"embed_url": lyric["embed_url"],
|
29 |
+
}
|
30 |
+
)
|
31 |
|
32 |
+
embeddings = OpenAIEmbeddings(model=MODEL_ID)
|
33 |
|
34 |
+
db = DeepLake.from_texts(
|
35 |
+
texts, embeddings, metadatas=metadatas, dataset_path=dataset_path
|
36 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
+
return db
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
|
41 |
+
def load_db(dataset_path: str, *args, **kwargs) -> DeepLake:
|
42 |
+
db = DeepLake(dataset_path, *args, **kwargs)
|
43 |
+
return db
|
44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
+
if __name__ == "__main__":
|
47 |
+
dataset_path = f"hub://{os.environ['ACTIVELOOP_ORG_ID']}/{DATASET_ID}"
|
48 |
+
create_db(dataset_path, "data/lyrics_with_spotify_url.json")
|
|
|
|
|
|
|
|
|
|
|
|
data/lyrics.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
data/lyrics_with_spotify_url.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
data/lyrics_with_spotify_url_and_summary.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"friend like me": {"summary": "SUMMARY: The song is about the power of friendship and the willingness to help others, with a focus on the magical abilities of the genie and the endless possibilities that come with his assistance.", "embed_url": "https://open.spotify.com/embed/track/5f2TWu6R2YYCJtLQ0fP78H?utm_source=generator"}, "arabian nights": {"summary": "SUMMARY: The song evokes a sense of adventure and exoticism, with themes of home, heat, and the allure of Arabian nights.", "embed_url": "https://open.spotify.com/embed/track/0CKmN3Wwk8W4zjU0pqq2cv?utm_source=generator"}, "a whole new world": {"summary": "SUMMARY: The song is about the excitement and wonder of discovering a new world with someone you love, and the feeling of limitless possibilities that come with it.", "embed_url": "https://open.spotify.com/embed/track/1hwdPQtFHISvZ9SXMkNrIK?utm_source=generator"}, "one jump ahead": {"summary": "SUMMARY: Aladdin sings about his struggles as a street rat, constantly having to stay one step ahead of the law and society's expectations, while relying on his friendship with Abu to survive.", "embed_url": "https://open.spotify.com/embed/track/4wN8Ov3kPZdkJ8XcYxYUGz?utm_source=generator"}}
|
data/spotify_disney_songs.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
embeddings.npy
ADDED
Binary file (24.7 kB). View file
|
|
names.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
MODEL_ID = "text-embedding-ada-002"
|
2 |
+
DATASET_ID = "disney-lyrics"
|
playground.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dotenv import load_dotenv
|
2 |
+
|
3 |
+
load_dotenv()
|
4 |
+
import json
|
5 |
+
import os
|
6 |
+
from pathlib import Path
|
7 |
+
|
8 |
+
import deeplake
|
9 |
+
import numpy as np
|
10 |
+
import openai
|
11 |
+
|
12 |
+
# https://www.disneyclips.com/lyrics/
|
13 |
+
DATASET_NAME = "disney-lyrics"
|
14 |
+
model_id = "text-embedding-ada-002"
|
15 |
+
dataset_path = f"hub://{os.environ['ACTIVELOOP_ORG_ID']}/{DATASET_NAME}"
|
16 |
+
print(dataset_path)
|
17 |
+
runtime = {"db_engine": True}
|
18 |
+
|
19 |
+
with open("lyrics.json", "rb") as f:
|
20 |
+
lyrics = json.load(f)["lyrics"]
|
21 |
+
|
22 |
+
# embeddings = [el["embedding"] for el in openai.Embedding.create(input=lyrics, model=model_id)['data']]
|
23 |
+
|
24 |
+
# embeddings_np = np.array(embeddings)
|
25 |
+
# np.save("embeddings.npy", embeddings_np)
|
26 |
+
|
27 |
+
embeddings_np = np.load("embeddings.npy")
|
28 |
+
|
29 |
+
print(embeddings_np.shape)
|
30 |
+
|
31 |
+
|
32 |
+
# ds = deeplake.empty(dataset_path, runtime=runtime, overwrite=True)
|
33 |
+
|
34 |
+
# # https://docs.deeplake.ai/en/latest/Htypes.html
|
35 |
+
# with ds:
|
36 |
+
# ds.create_tensor("embedding", htype="embedding", dtype=np.float32, exist_ok=True)
|
37 |
+
# ds.extend({ "embedding": embeddings_np.astype(np.float32)})
|
38 |
+
# ds.summary()
|
39 |
+
|
40 |
+
search_term = "Let's get down to business"
|
41 |
+
|
42 |
+
embedding = openai.Embedding.create(input=search_term, model="text-embedding-ada-002")[
|
43 |
+
"data"
|
44 |
+
][0]["embedding"]
|
45 |
+
|
46 |
+
# Format the embedding as a string, so it can be passed in the REST API request.
|
47 |
+
embedding_search = ",".join([str(item) for item in embedding])
|
48 |
+
|
49 |
+
# embedding_search = ",".join([str(item) for item in embeddings_np[0].tolist()])
|
50 |
+
# print(embedding_search)
|
51 |
+
|
52 |
+
|
53 |
+
ds = deeplake.load(dataset_path)
|
54 |
+
|
55 |
+
# print(embedding_search)
|
56 |
+
query = f'select * from (select l2_norm(embedding - ARRAY[{embedding_search}]) as score from "{dataset_path}") order by score desc limit 5'
|
57 |
+
with open("foo.txt", "w") as f:
|
58 |
+
f.write(query)
|
59 |
+
query_res = ds.query(query)
|
60 |
+
print(query_res)
|
prompts/bot.prompt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
We have a simple song retrieval system. It accepts a max of 4 emotions. You are tasked to suggest emotions to match the users feelings. Let me show you a couple of examples
|
2 |
+
|
3 |
+
Input: "I had a great day!"
|
4 |
+
Output: "Joy and Energy"
|
5 |
+
Input: "I am very tired today and I am not feeling weel"
|
6 |
+
Output: "Exhaustion, Discomfort, and Fatigue"
|
7 |
+
|
8 |
+
If the sentence is too short, you can also suggest just one or two emotions.
|
9 |
+
Please, suggest emotions for input = "{content}", reply ONLY with a max of FOUR emotions.
|
prompts/bot_with_summary.prompt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Given the following list of songs:
|
2 |
+
|
3 |
+
{songs}
|
4 |
+
|
5 |
+
Given an user input. Output the song name, ONLY THE SONG NAME, that will be appropriate with the user feelings/emotions.
|
6 |
+
|
7 |
+
For example:
|
8 |
+
Input: "Today I am not feeling great"
|
9 |
+
<SONG_NAME>
|
10 |
+
|
11 |
+
The user input is "{user_input}", reply only with the song name
|
prompts/summary.prompt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
This is a disney song, can you output me a string with a one sentence summary of the themes/emotions of the song? Be specific, we will use the emotions/themes as keywords to search later. JUST the summary, not an introduction.
|
2 |
+
|
3 |
+
examples
|
4 |
+
INPUT: <SONG>
|
5 |
+
OUTPUT: <SUMMARY>
|
6 |
+
|
7 |
+
{song}
|
requirements.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
openai
|
2 |
+
torch==2.0.1
|
3 |
+
torchvision
|
4 |
+
python-dotenv
|
5 |
+
deeplake
|
6 |
+
langchain
|
7 |
+
tiktoken
|
8 |
+
aiohttp
|
9 |
+
cchardet
|
10 |
+
aiodns
|
11 |
+
streamlit
|
scrape.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# def get_lyrics_url_from_website():
|
2 |
+
# # https://www.disneyclips.com/lyrics/
|
3 |
+
|
4 |
+
import asyncio
|
5 |
+
import json
|
6 |
+
from collections import defaultdict
|
7 |
+
from itertools import chain
|
8 |
+
from typing import List, Optional, Tuple, TypedDict
|
9 |
+
|
10 |
+
import aiohttp
|
11 |
+
from bs4 import BeautifulSoup
|
12 |
+
|
13 |
+
URL = "https://www.disneyclips.com/lyrics/"
|
14 |
+
|
15 |
+
|
16 |
+
async def get_lyrics_names_and_urls_from_movie_url(
|
17 |
+
movie_name: str, url: str, session: aiohttp.ClientSession
|
18 |
+
) -> List[Tuple[str, str]]:
|
19 |
+
async with session.get(url) as response:
|
20 |
+
html = await response.text()
|
21 |
+
soup = BeautifulSoup(html, "html.parser")
|
22 |
+
table = soup.find("table", {"class": "songs"})
|
23 |
+
names_and_urls = []
|
24 |
+
if table:
|
25 |
+
links = table.find_all("a")
|
26 |
+
names_and_urls = []
|
27 |
+
for link in links:
|
28 |
+
names_and_urls.append(
|
29 |
+
(movie_name, link.text, f"{URL}/{link.get('href')}")
|
30 |
+
)
|
31 |
+
return names_and_urls
|
32 |
+
|
33 |
+
|
34 |
+
async def get_lyric_from_lyric_url(
|
35 |
+
movie_name: str, lyric_name: str, url: str, session: aiohttp.ClientSession
|
36 |
+
) -> str:
|
37 |
+
async with session.get(url) as response:
|
38 |
+
html = await response.text()
|
39 |
+
soup = BeautifulSoup(html, "html.parser")
|
40 |
+
div = soup.find("div", {"id": "cnt"}).find("div", {"class": "main"})
|
41 |
+
paragraphs = div.find_all("p")
|
42 |
+
text = ""
|
43 |
+
# first <p> has the lyric
|
44 |
+
p = paragraphs[0]
|
45 |
+
for br in p.find_all("br"):
|
46 |
+
br.replace_with(". ")
|
47 |
+
for span in p.find_all("span"):
|
48 |
+
span.decompose()
|
49 |
+
text += p.text
|
50 |
+
|
51 |
+
return (movie_name, lyric_name, text)
|
52 |
+
|
53 |
+
|
54 |
+
async def get_movie_names_and_urls(
|
55 |
+
session: aiohttp.ClientSession,
|
56 |
+
) -> List[Tuple[str, str]]:
|
57 |
+
async with session.get(URL) as response:
|
58 |
+
html = await response.text()
|
59 |
+
soup = BeautifulSoup(html, "html.parser")
|
60 |
+
links = (
|
61 |
+
soup.find("div", {"id": "cnt"}).find("div", {"class": "main"}).find_all("a")
|
62 |
+
)
|
63 |
+
movie_names_and_urls = [
|
64 |
+
(link.text, f"{URL}/{link.get('href')}") for link in links
|
65 |
+
]
|
66 |
+
return movie_names_and_urls
|
67 |
+
|
68 |
+
|
69 |
+
async def scrape_disney_lyrics():
|
70 |
+
async with aiohttp.ClientSession() as session:
|
71 |
+
data = await get_movie_names_and_urls(session)
|
72 |
+
data = await asyncio.gather(
|
73 |
+
*[
|
74 |
+
asyncio.create_task(
|
75 |
+
get_lyrics_names_and_urls_from_movie_url(*el, session)
|
76 |
+
)
|
77 |
+
for el in data
|
78 |
+
]
|
79 |
+
)
|
80 |
+
data = await asyncio.gather(
|
81 |
+
*[
|
82 |
+
asyncio.create_task(get_lyric_from_lyric_url(*data, session))
|
83 |
+
for data in chain(*data)
|
84 |
+
]
|
85 |
+
)
|
86 |
+
|
87 |
+
result = defaultdict(list)
|
88 |
+
|
89 |
+
for movie_name, lyric_name, lyric_text in data:
|
90 |
+
result[movie_name].append({"name": lyric_name, "text": lyric_text})
|
91 |
+
|
92 |
+
with open("data/lyrics.json", "w") as f:
|
93 |
+
json.dump(result, f)
|
94 |
+
|
95 |
+
|
96 |
+
loop = asyncio.get_event_loop()
|
97 |
+
loop.run_until_complete(scrape_disney_lyrics())
|
scripts/create_one_sentence_summary.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dotenv import load_dotenv
|
2 |
+
load_dotenv()
|
3 |
+
|
4 |
+
from langchain.chains import LLMChain
|
5 |
+
from langchain.prompts import PromptTemplate
|
6 |
+
from pathlib import Path
|
7 |
+
from langchain.chat_models import ChatOpenAI
|
8 |
+
import json
|
9 |
+
from collections import defaultdict
|
10 |
+
from pprint import pprint
|
11 |
+
|
12 |
+
prompt = PromptTemplate(
|
13 |
+
input_variables=["song"],
|
14 |
+
template=Path("prompts/summary.prompt").read_text(),
|
15 |
+
)
|
16 |
+
|
17 |
+
llm = ChatOpenAI(temperature=0)
|
18 |
+
|
19 |
+
chain = LLMChain(llm=llm, prompt=prompt)
|
20 |
+
|
21 |
+
with open("/home/zuppif/Documents/Work/ActiveLoop/ai-shazam/data/lyrics_with_spotify_url.json", "r") as f:
|
22 |
+
data = json.load(f)
|
23 |
+
|
24 |
+
lyrics_summaries = {}
|
25 |
+
|
26 |
+
for movie, lyrics in data.items():
|
27 |
+
for lyric in lyrics:
|
28 |
+
print(f"Creating summary for {lyric['name']}")
|
29 |
+
summary = chain.run(song=lyric['text'])
|
30 |
+
lyrics_summaries[lyric['name'].lower()] = {"summary": summary, "embed_url": lyric["embed_url"] }
|
31 |
+
break
|
32 |
+
|
33 |
+
with open("/home/zuppif/Documents/Work/ActiveLoop/ai-shazam/data/lyrics_with_spotify_url_and_summary.json", "w") as f:
|
34 |
+
json.dump(lyrics_summaries, f)
|
35 |
+
|
36 |
+
pprint(lyrics_summaries)
|
scripts/keep_only_lyrics_on_spotify.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""This script will keep only the lyrics that are in the Spotify "Disney Hits" playlist
|
2 |
+
"""
|
3 |
+
from dotenv import load_dotenv
|
4 |
+
|
5 |
+
load_dotenv()
|
6 |
+
import json
|
7 |
+
|
8 |
+
import spotipy
|
9 |
+
from spotipy.oauth2 import SpotifyClientCredentials
|
10 |
+
|
11 |
+
name = "Disney hits"
|
12 |
+
|
13 |
+
spotify = spotipy.Spotify(auth_manager=SpotifyClientCredentials())
|
14 |
+
results = spotify.search(q="playlist:" + name, type="playlist", limit=5)
|
15 |
+
items = results["playlists"]["items"]
|
16 |
+
|
17 |
+
uri = "spotify:playlist:37i9dQZF1DX8C9xQcOrE6T"
|
18 |
+
playlist = spotify.playlist(uri)
|
19 |
+
|
20 |
+
# with open("spotify_disney_songs.json", "w") as f:
|
21 |
+
# json.dump(playlist,f)
|
22 |
+
|
23 |
+
|
24 |
+
with open("data/lyrics.json", "r") as f:
|
25 |
+
data = json.load(f)
|
26 |
+
|
27 |
+
spotify_tracks = {}
|
28 |
+
|
29 |
+
for item in playlist["tracks"]["items"]:
|
30 |
+
track = item["track"]
|
31 |
+
track_name = track["name"].lower().split("-")[0].strip()
|
32 |
+
print(track_name)
|
33 |
+
spotify_tracks[track_name] = {
|
34 |
+
"id": track["id"],
|
35 |
+
"embed_url": f"https://open.spotify.com/embed/track/{track['id']}?utm_source=generator",
|
36 |
+
}
|
37 |
+
|
38 |
+
# here we add only songs that are in the Disney spotify playlist
|
39 |
+
from collections import defaultdict
|
40 |
+
|
41 |
+
data_filtered = defaultdict(list)
|
42 |
+
tot = 0
|
43 |
+
for movie, lyrics in data.items():
|
44 |
+
for lyric in lyrics:
|
45 |
+
name = lyric["name"].lower()
|
46 |
+
if name in spotify_tracks:
|
47 |
+
data_filtered[movie].append({**lyric, **{ 'embed_url' : spotify_tracks[name]['embed_url']}})
|
48 |
+
tot += 1
|
49 |
+
print(tot)
|
50 |
+
|
51 |
+
with open("data/lyrics_with_spotify_url.json", "w") as f:
|
52 |
+
json.dump(data_filtered, f)
|
temp.ipynb
ADDED
@@ -0,0 +1,248 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "26b62e0c",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"%load_ext autoreload\n",
|
11 |
+
"%autoreload "
|
12 |
+
]
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"cell_type": "code",
|
16 |
+
"execution_count": 2,
|
17 |
+
"id": "b1a6a020",
|
18 |
+
"metadata": {
|
19 |
+
"scrolled": true
|
20 |
+
},
|
21 |
+
"outputs": [
|
22 |
+
{
|
23 |
+
"name": "stderr",
|
24 |
+
"output_type": "stream",
|
25 |
+
"text": [
|
26 |
+
"/home/zuppif/miniconda3/envs/activeloop/lib/python3.9/site-packages/deeplake/util/check_latest_version.py:32: UserWarning: A newer version of deeplake (3.4.3) is available. It's recommended that you update to the latest version using `pip install -U deeplake`.\n",
|
27 |
+
" warnings.warn(\n",
|
28 |
+
"-"
|
29 |
+
]
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"name": "stdout",
|
33 |
+
"output_type": "stream",
|
34 |
+
"text": [
|
35 |
+
"This dataset can be visualized in Jupyter Notebook by ds.visualize() or at https://app.activeloop.ai/zuppif/disney-lyrics\n",
|
36 |
+
"\n"
|
37 |
+
]
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"name": "stderr",
|
41 |
+
"output_type": "stream",
|
42 |
+
"text": [
|
43 |
+
"|"
|
44 |
+
]
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"name": "stdout",
|
48 |
+
"output_type": "stream",
|
49 |
+
"text": [
|
50 |
+
"hub://zuppif/disney-lyrics loaded successfully.\n",
|
51 |
+
"\n",
|
52 |
+
"Deep Lake Dataset in hub://zuppif/disney-lyrics already exists, loading from the storage\n",
|
53 |
+
"Dataset(path='hub://zuppif/disney-lyrics', read_only=True, tensors=['embedding', 'ids', 'metadata', 'text'])\n",
|
54 |
+
"\n",
|
55 |
+
" tensor htype shape dtype compression\n",
|
56 |
+
" ------- ------- ------- ------- ------- \n",
|
57 |
+
" embedding generic (85, 1536) float32 None \n",
|
58 |
+
" ids text (85, 1) str None \n",
|
59 |
+
" metadata json (85, 1) str None \n",
|
60 |
+
" text text (85, 1) str None \n"
|
61 |
+
]
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"name": "stderr",
|
65 |
+
"output_type": "stream",
|
66 |
+
"text": [
|
67 |
+
"\r",
|
68 |
+
" \r",
|
69 |
+
"\r",
|
70 |
+
" \r"
|
71 |
+
]
|
72 |
+
}
|
73 |
+
],
|
74 |
+
"source": [
|
75 |
+
"from dotenv import load_dotenv\n",
|
76 |
+
"load_dotenv() \n",
|
77 |
+
"from names import DATASET_ID, MODEL_ID\n",
|
78 |
+
"from data import load_db\n",
|
79 |
+
"import os\n",
|
80 |
+
"from langchain.chains import RetrievalQA, ConversationalRetrievalChain\n",
|
81 |
+
"from langchain.vectorstores import DeepLake\n",
|
82 |
+
"from langchain.llms import OpenAI\n",
|
83 |
+
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
|
84 |
+
"from langchain.chat_models import ChatOpenAI\n",
|
85 |
+
"\n",
|
86 |
+
"embeddings = OpenAIEmbeddings(model=MODEL_ID)\n",
|
87 |
+
"dataset_path = f\"hub://{os.environ['ACTIVELOOP_ORG_ID']}/{DATASET_ID}\"\n",
|
88 |
+
"\n",
|
89 |
+
"db = load_db(dataset_path, embedding_function=embeddings, token=os.environ['ACTIVELOOP_TOKEN'], org_id=os.environ[\"ACTIVELOOP_ORG_ID\"], read_only=True)"
|
90 |
+
]
|
91 |
+
},
|
92 |
+
{
|
93 |
+
"cell_type": "code",
|
94 |
+
"execution_count": 80,
|
95 |
+
"id": "07d8a381",
|
96 |
+
"metadata": {},
|
97 |
+
"outputs": [],
|
98 |
+
"source": [
|
99 |
+
"from langchain.chains import LLMChain\n",
|
100 |
+
"from langchain.prompts import PromptTemplate\n",
|
101 |
+
"from pathlib import Path\n",
|
102 |
+
"\n",
|
103 |
+
"prompt = PromptTemplate(\n",
|
104 |
+
" input_variables=[\"content\"],\n",
|
105 |
+
" template=Path(\"prompts/bot.prompt\").read_text(),\n",
|
106 |
+
")\n",
|
107 |
+
"\n",
|
108 |
+
"llm = ChatOpenAI(temperature=0.7)\n",
|
109 |
+
"\n",
|
110 |
+
"chain = LLMChain(llm=llm, prompt=prompt)"
|
111 |
+
]
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"cell_type": "code",
|
115 |
+
"execution_count": 81,
|
116 |
+
"id": "ebca722d",
|
117 |
+
"metadata": {},
|
118 |
+
"outputs": [
|
119 |
+
{
|
120 |
+
"data": {
|
121 |
+
"text/plain": [
|
122 |
+
"'Melancholy, Coziness, Nostalgia, Calmness.'"
|
123 |
+
]
|
124 |
+
},
|
125 |
+
"execution_count": 81,
|
126 |
+
"metadata": {},
|
127 |
+
"output_type": "execute_result"
|
128 |
+
}
|
129 |
+
],
|
130 |
+
"source": [
|
131 |
+
"emotions = chain.run(content=\"It's rainy\")\n",
|
132 |
+
"emotions"
|
133 |
+
]
|
134 |
+
},
|
135 |
+
{
|
136 |
+
"cell_type": "code",
|
137 |
+
"execution_count": 84,
|
138 |
+
"id": "9598a36c",
|
139 |
+
"metadata": {
|
140 |
+
"scrolled": false
|
141 |
+
},
|
142 |
+
"outputs": [
|
143 |
+
{
|
144 |
+
"data": {
|
145 |
+
"text/plain": [
|
146 |
+
"'https://open.spotify.com/embed/track/5EeQQ8BVJTRkp1AIKJILGY?utm_source=generator'"
|
147 |
+
]
|
148 |
+
},
|
149 |
+
"execution_count": 84,
|
150 |
+
"metadata": {},
|
151 |
+
"output_type": "execute_result"
|
152 |
+
}
|
153 |
+
],
|
154 |
+
"source": [
|
155 |
+
"doc, score = db.similarity_search_with_score(emotions, distance_metric=\"cos\")[0]\n",
|
156 |
+
"doc.metadata[\"embed_url\"]"
|
157 |
+
]
|
158 |
+
},
|
159 |
+
{
|
160 |
+
"cell_type": "code",
|
161 |
+
"execution_count": 83,
|
162 |
+
"id": "d6214e40",
|
163 |
+
"metadata": {},
|
164 |
+
"outputs": [
|
165 |
+
{
|
166 |
+
"data": {
|
167 |
+
"text/html": [
|
168 |
+
"\n",
|
169 |
+
" <iframe\n",
|
170 |
+
" width=\"700\"\n",
|
171 |
+
" height=\"350\"\n",
|
172 |
+
" src=\"https://open.spotify.com/embed/track/5EeQQ8BVJTRkp1AIKJILGY?utm_source=generator\"\n",
|
173 |
+
" frameborder=\"0\"\n",
|
174 |
+
" allowfullscreen\n",
|
175 |
+
" \n",
|
176 |
+
" ></iframe>\n",
|
177 |
+
" "
|
178 |
+
],
|
179 |
+
"text/plain": [
|
180 |
+
"<IPython.lib.display.IFrame at 0x7fb0be920a00>"
|
181 |
+
]
|
182 |
+
},
|
183 |
+
"execution_count": 83,
|
184 |
+
"metadata": {},
|
185 |
+
"output_type": "execute_result"
|
186 |
+
}
|
187 |
+
],
|
188 |
+
"source": [
|
189 |
+
"doc.metadata[\"embed_url\"]\n",
|
190 |
+
"\n",
|
191 |
+
"from IPython.display import IFrame\n",
|
192 |
+
"IFrame(doc.metadata[\"embed_url\"], width=700, height=350)"
|
193 |
+
]
|
194 |
+
},
|
195 |
+
{
|
196 |
+
"cell_type": "code",
|
197 |
+
"execution_count": 4,
|
198 |
+
"id": "28ae2c63",
|
199 |
+
"metadata": {
|
200 |
+
"scrolled": true
|
201 |
+
},
|
202 |
+
"outputs": [
|
203 |
+
{
|
204 |
+
"data": {
|
205 |
+
"text/plain": [
|
206 |
+
"Dataset(path='hub://zuppif/disney-lyrics', read_only=True, index=Index([()]), tensors=['embedding', 'ids', 'metadata', 'text'])"
|
207 |
+
]
|
208 |
+
},
|
209 |
+
"execution_count": 4,
|
210 |
+
"metadata": {},
|
211 |
+
"output_type": "execute_result"
|
212 |
+
}
|
213 |
+
],
|
214 |
+
"source": [
|
215 |
+
"db.ds.query(\"select * where contains(\\\"text\\\", 'Did they') limit 2\")"
|
216 |
+
]
|
217 |
+
},
|
218 |
+
{
|
219 |
+
"cell_type": "code",
|
220 |
+
"execution_count": null,
|
221 |
+
"id": "1780552c",
|
222 |
+
"metadata": {},
|
223 |
+
"outputs": [],
|
224 |
+
"source": []
|
225 |
+
}
|
226 |
+
],
|
227 |
+
"metadata": {
|
228 |
+
"kernelspec": {
|
229 |
+
"display_name": "Python 3 (ipykernel)",
|
230 |
+
"language": "python",
|
231 |
+
"name": "python3"
|
232 |
+
},
|
233 |
+
"language_info": {
|
234 |
+
"codemirror_mode": {
|
235 |
+
"name": "ipython",
|
236 |
+
"version": 3
|
237 |
+
},
|
238 |
+
"file_extension": ".py",
|
239 |
+
"mimetype": "text/x-python",
|
240 |
+
"name": "python",
|
241 |
+
"nbconvert_exporter": "python",
|
242 |
+
"pygments_lexer": "ipython3",
|
243 |
+
"version": "3.9.16"
|
244 |
+
}
|
245 |
+
},
|
246 |
+
"nbformat": 4,
|
247 |
+
"nbformat_minor": 5
|
248 |
+
}
|