Francesco-A commited on
Commit
de2bc93
·
1 Parent(s): 1811d79

model change

Browse files
Files changed (1) hide show
  1. app.py +6 -10
app.py CHANGED
@@ -1,25 +1,23 @@
1
  # AUTOGENERATED! DO NOT EDIT! File to edit: ../drive/MyDrive/Codici/Python/Apps/Gradio_App/SemanticSearch_QA-v2.1.ipynb.
2
 
3
- # %% auto 0
4
  __all__ = ['model_name', 'qa_model', 'contexts', 'question', 'df_results', 'question_1', 'question_2', 'question_3', 'question_4',
5
  'question_5', 'question_6', 'question_7', 'question_8', 'question_9', 'question_10', 'title', 'description',
6
  'data', 'context_df', 'question_input', 'contexts_input', 'n_answers_input', 'full_context_input',
7
  'confidence_threshold_input', 'intf', 'get_answers']
8
 
9
- # %% ../drive/MyDrive/Codici/Python/Apps/Gradio_App/SemanticSearch_QA-v2.1.ipynb 2
10
  import pandas as pd
11
  import gradio as gr
12
  import transformers
13
  from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
14
 
15
- model_name = 'Francesco-A/bert-finetuned-squad-v1'
16
- # model_name = "deepset/roberta-base-squad2"
17
 
18
  qa_model = pipeline(task = 'question-answering',
19
  model = model_name,
20
  tokenizer = model_name)
21
 
22
- # %% ../drive/MyDrive/Codici/Python/Apps/Gradio_App/SemanticSearch_QA-v2.1.ipynb 5
23
  def get_answers(question, contexts, n_answers=1, full_context=True, confidence_threshold = 0.5):
24
  results = []
25
 
@@ -30,7 +28,7 @@ def get_answers(question, contexts, n_answers=1, full_context=True, confidence_t
30
 
31
  for i, context in enumerate(contexts):
32
  QA_input = {'question': question, 'context': context}
33
- res = qa_model(QA_input)
34
 
35
  results_dict = {
36
  'context_idx': i,
@@ -43,7 +41,7 @@ def get_answers(question, contexts, n_answers=1, full_context=True, confidence_t
43
  results_dict['Full Context'] = context
44
 
45
  results.append(results_dict)
46
-
47
  df = pd.DataFrame(results)
48
  df = df[df['Score'] >= confidence_threshold]
49
  df = df.sort_values(by='Score', ascending=False).head(n_answers)
@@ -63,7 +61,6 @@ question = "Why is model conversion important?"
63
  df_results = get_answers(question,contexts,n_answers=2,full_context=False, confidence_threshold = 0.25)
64
  df_results
65
 
66
- # %% ../drive/MyDrive/Codici/Python/Apps/Gradio_App/SemanticSearch_QA-v2.1.ipynb 6
67
  # Define example question(s)
68
  question_1 = "What are the main features of the new XPhone 20?"
69
  question_2 = "What are some benefits of regular exercise?"
@@ -120,10 +117,9 @@ contexts = [
120
  "The Declaration of Independence was adopted by the Continental Congress on July 4, 1776.",
121
  ]
122
 
123
- # %% ../drive/MyDrive/Codici/Python/Apps/Gradio_App/SemanticSearch_QA-v2.1.ipynb 9
124
  title = 'SemanticSearch_QA-v2'
125
  description = """
126
- QA model: [Francesco-A/bert-finetuned-squad-v1](https://huggingface.co/Francesco-A/bert-finetuned-squad-v1)
127
  """
128
 
129
  data = {
 
1
  # AUTOGENERATED! DO NOT EDIT! File to edit: ../drive/MyDrive/Codici/Python/Apps/Gradio_App/SemanticSearch_QA-v2.1.ipynb.
2
 
3
+
4
  __all__ = ['model_name', 'qa_model', 'contexts', 'question', 'df_results', 'question_1', 'question_2', 'question_3', 'question_4',
5
  'question_5', 'question_6', 'question_7', 'question_8', 'question_9', 'question_10', 'title', 'description',
6
  'data', 'context_df', 'question_input', 'contexts_input', 'n_answers_input', 'full_context_input',
7
  'confidence_threshold_input', 'intf', 'get_answers']
8
 
 
9
  import pandas as pd
10
  import gradio as gr
11
  import transformers
12
  from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
13
 
14
+ # model_name = 'Francesco-A/bert-finetuned-squad-v1'
15
+ model_name = "deepset/roberta-base-squad2"
16
 
17
  qa_model = pipeline(task = 'question-answering',
18
  model = model_name,
19
  tokenizer = model_name)
20
 
 
21
  def get_answers(question, contexts, n_answers=1, full_context=True, confidence_threshold = 0.5):
22
  results = []
23
 
 
28
 
29
  for i, context in enumerate(contexts):
30
  QA_input = {'question': question, 'context': context}
31
+ res = qa_model(question = QA_input['question'], context = QA_input['context'])
32
 
33
  results_dict = {
34
  'context_idx': i,
 
41
  results_dict['Full Context'] = context
42
 
43
  results.append(results_dict)
44
+
45
  df = pd.DataFrame(results)
46
  df = df[df['Score'] >= confidence_threshold]
47
  df = df.sort_values(by='Score', ascending=False).head(n_answers)
 
61
  df_results = get_answers(question,contexts,n_answers=2,full_context=False, confidence_threshold = 0.25)
62
  df_results
63
 
 
64
  # Define example question(s)
65
  question_1 = "What are the main features of the new XPhone 20?"
66
  question_2 = "What are some benefits of regular exercise?"
 
117
  "The Declaration of Independence was adopted by the Continental Congress on July 4, 1776.",
118
  ]
119
 
 
120
  title = 'SemanticSearch_QA-v2'
121
  description = """
122
+ QA model: [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2)
123
  """
124
 
125
  data = {