import streamlit as st from transformers import pipeline import re import nltk from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer nltk.download('stopwords') nltk.download('wordnet') # Initialize the zero-shot classification pipeline classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli") # Define the candidate labels according to the Enneagram types default_labels = ["Peacemaker", "Loyalist", "Achiever", "Reformer", "Individualist", "Helper", "Challenger", "Investigator", "Enthusiast"] # Streamlit interface st.title("Resume-based Personality Prediction") resume_text = st.text_area("Enter Resume Text Here", height=300) # User-defined labels option user_labels = st.text_input("Enter custom labels separated by comma (optional)") labels = user_labels.split(',') if user_labels else default_labels # Prediction confidence threshold confidence_threshold = st.slider("Confidence Threshold", 0.0, 1.0, 0.5) if st.button("Predict Personality"): # Text Preprocessing def preprocess_text(text): text = re.sub(r'\W', ' ', str(text)) text = text.lower() text = re.sub(r'\s+[a-z]\s+', ' ', text) text = re.sub(r'^[a-z]\s+', ' ', text) text = re.sub(r'\s+', ' ', text) stop_words = set(stopwords.words('english')) lemmatizer = WordNetLemmatizer() tokens = text.split() tokens = [lemmatizer.lemmatize(word) for word in tokens if word not in stop_words] return ' '.join(tokens) processed_text = preprocess_text(resume_text) # Make prediction result = classifier(processed_text, labels) # Display the results st.write("Predictions (above confidence threshold):") displayed = False for label, score in zip(result['labels'], result['scores']): if score >= confidence_threshold: st.write(f"{label}: {score*100:.2f}%") displayed = True if not displayed: st.write("No predictions exceed the confidence threshold.")