import streamlit as st import pandas as pd from transformers import pipeline import re import nltk from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer # Download necessary NLTK resources nltk.download('stopwords') nltk.download('wordnet') # Initialize the zero-shot classification pipeline classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli") # Streamlit interface setup st.title("Resume-based Personality Prediction by Serikov Ayanbek") resume_text = st.text_area("Enter Resume Text Here", height=300) # Load data from Excel data = pd.read_excel("ResponseTest.xlsx") # Replace 'ResponseTest.xlsx' with your actual file name data_open = pd.read_excel("ResponseOpen.xlsx") # Replace 'ResponseTest.xlsx' with your actual file name # Preprocess text function def preprocess_text(text): text = re.sub(r'\W', ' ', str(text)) text = text.lower() text = re.sub(r'\s+[a-z]\s+', ' ', text) text = re.sub(r'^[a-z]\s+', ' ', text) text = re.sub(r'\s+', ' ', text) stop_words = set(stopwords.words('english')) lemmatizer = WordNetLemmatizer() tokens = text.split() tokens = [lemmatizer.lemmatize(word) for word in tokens if word not in stop_words] return ' '.join(tokens) # Combine relevant text columns for processing question_columns = [f'Q{i}' for i in range(1, 37)] # Adjust the range based on your data columns data['processed_text'] = data[['CV/Resume'] + question_columns].agg(lambda x: ', '.join(x), axis=1) #data['processed_text'] = data[['CV/Resume'] + question_columns].agg(lambda x: ', '.join(x), axis=1).apply(preprocess_text) #data_open['processed_text_open'] = data_open[['CV/Resume', 'Question']].agg(' '.join, axis=1).apply(preprocess_text) data_open['processed_text_open'] = data_open[['Demo_F', 'Question']].agg(' '.join, axis=1) data_open['processed_text_mopen'] = data_open[['Demo_M', 'Question']].agg(' '.join, axis=1) labels = ["Peacemaker", "Loyalist", "Achiever", "Reformer", "Individualist", "Helper", "Challenger", "Investigator", "Enthusiast"] # Prediction confidence threshold confidence_threshold = st.slider("Confidence Threshold", 0.0, 1.0, 0.5) if st.button("Predict Personality by Test"): # Function to apply predictions using dynamic labels from MAX1, MAX2, MAX3 and only return the highest scored label def get_predictions(row): custom_labels = [row['MAX1'], row['MAX2'], row['MAX3']] # Get labels from each row processed_text = row['processed_text'] result = classifier(processed_text, custom_labels) highest_score_label = result['labels'][0] # Assumes the labels are sorted by score, highest first return highest_score_label # Apply predictions across all rows data['Predicted'] = data.apply(get_predictions, axis=1) st.dataframe(data[['True_label','MAX1','MAX2','MAX3', 'Predicted']]) if st.button("Predict Personality by Open Question F"): def get_predictions(row): processed_text = row['processed_text_open'] result = classifier(processed_text, labels) highest_score_label = result['labels'][0] # Assumes the labels are sorted by score, highest first return highest_score_label # Apply predictions across all rows data_open['Predicted_F'] = data_open.apply(get_predictionsM, axis=1) st.dataframe(data_open[['True_label', 'Predicted_F']]) if st.button("Predict Personality by Open Question M"): def get_predictionsM(row): processed_text = row['processed_text_mopen'] result = classifier(processed_text, labels) highest_score_label = result['labels'][0] # Assumes the labels are sorted by score, highest first return highest_score_label # Apply predictions across all rows data_open['Predicted_M'] = data_open.apply(get_predictions, axis=1) st.dataframe(data_open[['True_label', 'Predicted_M']])