import streamlit as st import pandas as pd from transformers import pipeline import re import nltk from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer # Download necessary NLTK resources nltk.download('stopwords') nltk.download('wordnet') # Initialize the zero-shot classification pipeline classifier = pipeline("zero-shot-classification", model="Fralet/personality") # Define the candidate labels according to the Enneagram types default_labels = ["Peacemaker", "Loyalist", "Achiever", "Reformer", "Individualist", "Helper", "Challenger", "Investigator", "Enthusiast"] # Streamlit interface setup st.title("Resume-based Personality Prediction by Serikov Ayanbek") # Load data from Excel data = pd.read_excel("ResponseTest.xlsx") # Replace 'your_excel_file.xlsx' with your actual file name # Preprocess text function def preprocess_text(text): text = re.sub(r'\W', ' ', str(text)) text = text.lower() text = re.sub(r'\s+[a-z]\s+', ' ', text) text = re.sub(r'^[a-z]\s+', ' ', text) text = re.sub(r'\s+', ' ', text) stop_words = set(stopwords.words('english')) lemmatizer = WordNetLemmatizer() tokens = text.split() tokens = [lemmatizer.lemmatize(word) for word in tokens if word not in stop_words] return ' '.join(tokens) # User-defined labels option user_labels = st.text_input("Enter custom labels separated by comma (optional)") labels = user_labels.split(',') if user_labels else default_labels # Prediction confidence threshold confidence_threshold = st.slider("Confidence Threshold", 0.0, 1.0, 0.5) if st.button("Predict Personality"): # Combine relevant text columns question_columns = [f'Q{i}' for i in range(1, 37)] # Adjust range if there are more or fewer question columns data['combined_text'] = data[['CV/Resume'] + question_columns].agg(' '.join, axis=1) data['processed_text'] = data['combined_text'].apply(preprocess_text) # Make predictions predictions = data['processed_text'].apply(lambda x: classifier(x, labels)) # Extract and display predictions data['predicted_labels'] = predictions.apply(lambda x: [label for label, score in zip(x['labels'], x['scores']) if score >= confidence_threshold]) st.dataframe(data[['True_label', 'Predicted', 'predicted_labels']])