from langchain.embeddings.openai import OpenAIEmbeddings from langchain.text_splitter import NLTKTextSplitter from langchain.vectorstores import Chroma from langchain.docstore.document import Document from langchain.prompts import PromptTemplate from langchain.indexes.vectorstore import VectorstoreIndexCreator from langchain.chains.question_answering import load_qa_chain from langchain.llms import OpenAI import nltk import os nltk.download("punkt") with open("guide1.txt") as f: hitchhikersguide = f.read() text_splitter = NLTKTextSplitter() texts = text_splitter.split_text(hitchhikersguide) def make_inference(query, openai_key=""): os.environ["OPENAI_API_KEY"] = openai_key embeddings = OpenAIEmbeddings() docsearch = Chroma.from_texts(texts, embeddings, metadatas=[{"source": str(i)} for i in range(len(texts))]).as_retriever() chain = load_qa_chain(OpenAI(temperature=0), chain_type="refine") docs = docsearch.get_relevant_documents(query) return chain({"input_documents": docs, "question": query}, return_only_outputs=True) if __name__ == "__main__": # make a gradio interface import gradio as gr gr.Interface( make_inference, [ gr.inputs.Textbox(lines=2, label="Query"), gr.inputs.Textbox(lines=2, label="OpenAI Key"), ], gr.outputs.Textbox(label="Response"), title="🗣️TalkToMyDoc📄", description="🗣️TalkToMyDoc📄 is a tool that allows you to ask questions about a document. In this case - Hitch Hitchhiker's Guide to the Galaxy.", ).launch()