import cv2 from PIL import Image import torch import matplotlib.pyplot as plt import torch.functional as F import torch.nn as nn import numpy as np import torchvision import torchvision.transforms as transforms if torch.cuda.is_available(): device = torch.device("cuda") else: device = torch.device("cpu") mean_nums = [0.485, 0.456, 0.406] std_nums = [0.229, 0.224, 0.225] val_transform = transforms.Compose([ transforms.Resize((150,150)), transforms.CenterCrop(150), #Performs Crop at Center and resizes it to 150x150 transforms.ToTensor(), transforms.Normalize(mean=mean_nums, std = std_nums) ]) def transform_image(image, transforms): # img = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB) img = transforms(image) img = img.unsqueeze(0) return img class DenseNet(nn.Module): def __init__(self): super(DenseNet, self).__init__() self.base_model = torchvision.models.densenet121(weights="DEFAULT").features self.pool = nn.AdaptiveAvgPool2d((1,1)) self.fc = nn.Linear(1024, 1000) self.classify = nn.Linear(1000, 1) self.classifier = nn.Sigmoid() def forward(self, x): x = self.base_model(x) x = self.pool(x) x = x.view(-1, 1024) x = self.fc(x) x = self.classify(x) x = self.classifier(x) return x class ModelGradCam(nn.Module): def __init__(self, base_model): super(ModelGradCam, self).__init__() self.features_conv = base_model.base_model self.pool = base_model.pool self.fc = base_model.fc self.classify = base_model.classify self.classifier = base_model.classifier self.gradients = None def activations_hook(self, grad): self.gradients = grad def forward(self, x): x = self.features_conv(x) h = x.register_hook(self.activations_hook) x = self.pool(x) x = x.view(-1, 1024) x = self.fc(x) x = self.classify(x) x = self.classifier(x) return x def get_activations_gradient(self): return self.gradients def get_activations(self, x): return self.features_conv(x) def plot_grad_cam(model, x_ray_image, class_names, threshold:int=0.5, normalized=True): model.eval() # fig, axs = plt.subplots(1, 2, figsize=(15, 10)) image = x_ray_image outputs = model(image).view(-1) conf = [1-outputs.item(), outputs.item()] # conf = 1 - outputs if outputs < threshold else outputs pred = torch.where(outputs > threshold, torch.tensor(1, device=device), torch.tensor(0, device=device)) outputs[0].backward() gradients = model.get_activations_gradient() pooled_gradients = torch.mean(gradients, dim=[0, 2, 3]) activations = model.get_activations(image).detach() activations *= pooled_gradients.unsqueeze(-1).unsqueeze(-1) heatmap = torch.mean(activations, dim=1).squeeze() heatmap = np.maximum(heatmap.cpu(), 0) heatmap /= torch.max(heatmap) img = image.squeeze().permute(1, 2, 0).cpu().numpy() img = img if normalized else img/255.0 heatmap = cv2.resize(heatmap.numpy(), (img.shape[1], img.shape[0])) heatmap = np.uint8(255 * heatmap) heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET) superimposed_img = heatmap * 0.0045 + img output_dict = dict(zip(class_names, np.round(conf,3))) return superimposed_img, class_names[pred.item()], output_dict # axs[0].imshow(img) # axs[1].imshow(superimposed_img) # axs[0].set_title(f'Predicted: {class_names[pred.item()]}\n Confidence: {conf.item():.3f}') # axs[0].axis('off') # axs[1].set_title(f'Predicted: {class_names[pred.item()]}\n Confidence: {conf.item():.3f}') # axs[1].axis('off') # plt.show()