import torch from safetensors.torch import save_file import gradio as gr import os def convert_embedding(sd15_embedding): # Temporary file paths input_path = "temp_input.pt" output_path = "temp_output.safetensors" # Save uploaded file to disk to be processed with open(input_path, "wb") as f: f.write(sd15_embedding) # Your existing conversion logic sd15_embedding = torch.load(input_path, map_location=torch.device('cpu')) sd15_tensor = sd15_embedding['string_to_param']['*'] num_vectors = sd15_tensor.shape[0] clip_g_shape = (num_vectors, 1280) clip_l_shape = (num_vectors, 768) clip_g = torch.zeros(clip_g_shape, dtype=torch.float16) clip_l = torch.zeros(clip_l_shape, dtype=torch.float16) clip_l[:sd15_tensor.shape[0], :sd15_tensor.shape[1]] = sd15_tensor.to(dtype=torch.float16) save_file({"clip_g": clip_g, "clip_l": clip_l}, output_path) # Remove the temporary input file os.remove(input_path) # Return the path to the converted file for download return output_path iface = gr.Interface( fn=convert_embedding, inputs=gr.File(label="Upload SD1.5 Embedding"), outputs=gr.File(label="Download Converted SDXL Embedding"), title="SD1.5 to SDXL Embedding Converter", description="Upload an SD1.5 embedding file to convert it to SDXL format." ) if __name__ == "__main__": iface.launch()