import json import os import pickle import re import gradio as gr import matplotlib.pyplot as plt import networkx as nx from tqdm import tqdm def load_json_from_path(path): with open(path, "r", encoding="utf8") as f: obj = json.loads(f.read()) return obj class Visualizer: def __init__(self, cache_root="."): self.iso_codes_to_names = load_json_from_path(os.path.join(cache_root, "iso_to_fullname.json")) for code in self.iso_codes_to_names: self.iso_codes_to_names[code] = re.sub("\(.*?\)", "", self.iso_codes_to_names[code]) tree_lookup_path = os.path.join(cache_root, "lang_1_to_lang_2_to_tree_dist.json") tree_dist = load_json_from_path(tree_lookup_path) distances = list() for lang_1 in tree_dist: if lang_1 not in self.iso_codes_to_names: continue for lang_2 in tree_dist[lang_1]: if lang_2 not in self.iso_codes_to_names: continue if lang_1 != lang_2: distances.append((self.iso_codes_to_names[lang_1], self.iso_codes_to_names[lang_2], tree_dist[lang_1][lang_2])) min_dist = min(d for _, _, d in distances) max_dist = max(d for _, _, d in distances) self.tree_distances = [(entity1, entity2, (d - min_dist) / (max_dist - min_dist)) for entity1, entity2, d in distances] map_lookup_path = os.path.join(cache_root, "lang_1_to_lang_2_to_map_dist.json") map_dist = load_json_from_path(map_lookup_path) distances = list() for lang_1 in map_dist: if lang_1 not in self.iso_codes_to_names: continue for lang_2 in map_dist[lang_1]: if lang_2 not in self.iso_codes_to_names: continue if lang_1 != lang_2: distances.append((self.iso_codes_to_names[lang_1], self.iso_codes_to_names[lang_2], map_dist[lang_1][lang_2])) min_dist = min(d for _, _, d in distances) max_dist = max(d for _, _, d in distances) self.map_distances = [(entity1, entity2, (d - min_dist) / (max_dist - min_dist)) for entity1, entity2, d in distances] asp_dict_path = os.path.join(cache_root, "asp_dict.pkl") with open(asp_dict_path, 'rb') as dictfile: asp_sim = pickle.load(dictfile) lang_list = list(asp_sim.keys()) asp_dist = dict() seen_langs = set() for lang_1 in lang_list: if lang_1 not in seen_langs: seen_langs.add(lang_1) asp_dist[lang_1] = dict() for index, lang_2 in enumerate(lang_list): if lang_2 not in seen_langs: # it's symmetric asp_dist[lang_1][lang_2] = 1 - asp_sim[lang_1][index] distances = list() for lang_1 in asp_dist: if lang_1 not in self.iso_codes_to_names: continue for lang_2 in asp_dist[lang_1]: if lang_2 not in self.iso_codes_to_names: continue if lang_1 != lang_2: distances.append((self.iso_codes_to_names[lang_1], self.iso_codes_to_names[lang_2], asp_dist[lang_1][lang_2])) min_dist = min(d for _, _, d in distances) max_dist = max(d for _, _, d in distances) self.asp_distances = [(entity1, entity2, (d - min_dist) / (max_dist - min_dist)) for entity1, entity2, d in distances] def visualize(self, distance_type, neighbor, num_neighbors): plt.clf() plt.figure(figsize=(12, 12)) assert distance_type in ["Physical Distance between Language Centroids on the Globe", "Distance to the Lowest Common Ancestor in the Language Family Tree", "Angular Distance between the Frequencies of Phonemes"] if distance_type == "Distance to the Lowest Common Ancestor in the Language Family Tree": normalized_distances = self.tree_distances elif distance_type == "Angular Distance between the Frequencies of Phonemes": normalized_distances = self.asp_distances elif distance_type == "Physical Distance between Language Centroids on the Globe": normalized_distances = self.map_distances G = nx.Graph() d_dist = list() for entity1, entity2, d in tqdm(normalized_distances): if neighbor == entity2 or neighbor == entity1: d_dist.append(d) thresh = sorted(d_dist)[num_neighbors] neighbors = set() for entity1, entity2, d in tqdm(normalized_distances): if d <= thresh and (neighbor == entity2 or neighbor == entity1) and len(neighbors) < num_neighbors + 1: neighbors.add(entity1) neighbors.add(entity2) spring_tension = ((thresh + 0.1) - d) * 100 # for vis purposes G.add_edge(entity1, entity2, weight=spring_tension) neighbors.remove(neighbor) thresh_for_neighbors = max([x for _, _, x in normalized_distances]) for entity1, entity2, d in tqdm(normalized_distances): if entity2 in neighbors and entity1 in neighbors: spring_tension = (thresh_for_neighbors + 0.1) - d G.add_edge(entity1, entity2, weight=spring_tension) pos = nx.spring_layout(G, weight="weight", iterations=200, threshold=1e-6) # Positions for all nodes edges = G.edges(data=True) nx.draw_networkx_nodes(G, pos, node_size=1, alpha=0.01) edges_connected_to_specific_node = [(u, v) for u, v in G.edges() if u == neighbor or v == neighbor] nx.draw_networkx_edges(G, pos, edgelist=edges_connected_to_specific_node, edge_color='orange', alpha=0.4, width=3) if num_neighbors < 6: edges_not_connected_to_specific_node = [(u, v) for u, v in G.edges() if u != neighbor and v != neighbor] nx.draw_networkx_edges(G, pos, edgelist=edges_not_connected_to_specific_node, edge_color='gray', alpha=0.05, width=1) for u, v, d in edges: if u == neighbor or v == neighbor: nx.draw_networkx_edge_labels(G, pos, edge_labels={(u, v): round(((thresh + 0.1) - (d['weight'] / 100)) * 100, 2)}, font_color="red", alpha=0.4) # reverse modifications nx.draw_networkx_labels(G, pos, font_size=14, font_family='sans-serif', font_color='green') nx.draw_networkx_labels(G, pos, labels={neighbor: neighbor}, font_size=14, font_family='sans-serif', font_color='red') plt.title(f'Graph of {distance_type}') plt.subplots_adjust(left=0, right=1, top=0.9, bottom=0) plt.tight_layout() return plt.gcf() if __name__ == '__main__': vis = Visualizer(cache_root=".") text_selection = [f"{vis.iso_codes_to_names[iso_code]}" for iso_code in vis.iso_codes_to_names] iface = gr.Interface(fn=vis.visualize, inputs=[gr.Dropdown(["Physical Distance between Language Centroids on the Globe", "Distance to the Lowest Common Ancestor in the Language Family Tree", "Angular Distance between the Frequencies of Phonemes"], type="value", value='Physical Distance between Language Centroids on the Globe', label="Select the Type of Distance"), gr.Dropdown(text_selection, type="value", value="German", label="Select the second Language (type on your keyboard to find it quickly)"), gr.Slider(minimum=0, maximum=100, step=1, value=12, label="How many Nearest Neighbors should be displayed?") ], outputs=[gr.Plot(label="", show_label=False, format="png", container=True)], description="

This demo allows you to find the nearest neighbors of a language from the ISO 639-3 list according to several distance measurement functions. " "For more information, check out our paper: https://arxiv.org/abs/2406.06403 and our text-to-speech tool, in which we make use of " "this technique: https://github.com/DigitalPhonetics/IMS-Toucan

", allow_flagging="never") iface.launch()