# Copyright 2019 Tomoki Hayashi # MIT License (https://opensource.org/licenses/MIT) # Adapted by Florian Lux 2023 from abc import ABC import torch from Modules.GeneralLayers.ConditionalLayerNorm import AdaIN1d from Modules.GeneralLayers.ConditionalLayerNorm import ConditionalLayerNorm from Modules.GeneralLayers.LayerNorm import LayerNorm from Utility.utils import integrate_with_utt_embed class VariancePredictor(torch.nn.Module, ABC): """ Variance predictor module. This is a module of variance predictor described in `FastSpeech 2: Fast and High-Quality End-to-End Text to Speech`_. .. _`FastSpeech 2: Fast and High-Quality End-to-End Text to Speech`: https://arxiv.org/abs/2006.04558 """ def __init__(self, idim, n_layers=2, n_chans=384, kernel_size=3, bias=True, dropout_rate=0.5, utt_embed_dim=None, embedding_integration="AdaIN"): """ Initialize duration predictor module. Args: idim (int): Input dimension. n_layers (int, optional): Number of convolutional layers. n_chans (int, optional): Number of channels of convolutional layers. kernel_size (int, optional): Kernel size of convolutional layers. dropout_rate (float, optional): Dropout rate. """ super().__init__() self.conv = torch.nn.ModuleList() self.dropouts = torch.nn.ModuleList() self.norms = torch.nn.ModuleList() self.embedding_projections = torch.nn.ModuleList() self.utt_embed_dim = utt_embed_dim self.use_conditional_layernorm_embedding_integration = embedding_integration in ["AdaIN", "ConditionalLayerNorm"] for idx in range(n_layers): if utt_embed_dim is not None: if embedding_integration == "AdaIN": self.embedding_projections += [AdaIN1d(style_dim=utt_embed_dim, num_features=idim)] elif embedding_integration == "ConditionalLayerNorm": self.embedding_projections += [ConditionalLayerNorm(speaker_embedding_dim=utt_embed_dim, hidden_dim=idim)] else: self.embedding_projections += [torch.nn.Linear(utt_embed_dim + idim, idim)] else: self.embedding_projections += [lambda x: x] in_chans = idim if idx == 0 else n_chans self.conv += [torch.nn.Sequential(torch.nn.Conv1d(in_chans, n_chans, kernel_size, stride=1, padding=(kernel_size - 1) // 2, bias=bias, ), torch.nn.ReLU())] self.norms += [LayerNorm(n_chans, dim=1)] self.dropouts += [torch.nn.Dropout(dropout_rate)] self.linear = torch.nn.Linear(n_chans, 1) def forward(self, xs, padding_mask=None, utt_embed=None): """ Calculate forward propagation. Args: xs (Tensor): Batch of input sequences (B, Tmax, idim). padding_mask (ByteTensor, optional): Batch of masks indicating padded part (B, Tmax). Returns: Tensor: Batch of predicted sequences (B, Tmax, 1). """ xs = xs.transpose(1, -1) # (B, idim, Tmax) for f, c, d, p in zip(self.conv, self.norms, self.dropouts, self.embedding_projections): xs = f(xs) # (B, C, Tmax) if self.utt_embed_dim is not None: xs = integrate_with_utt_embed(hs=xs.transpose(1, 2), utt_embeddings=utt_embed, projection=p, embedding_training=self.use_conditional_layernorm_embedding_integration).transpose(1, 2) xs = c(xs) xs = d(xs) xs = self.linear(xs.transpose(1, 2)) # (B, Tmax, 1) if padding_mask is not None: xs = xs.masked_fill(padding_mask, 0.0) return xs