import argparse import os import random import sys import torch from TrainingPipelines.AlignerPipeline import run as aligner from TrainingPipelines.HiFiGAN_combined import run as HiFiGAN from TrainingPipelines.StochasticToucanTTS_Nancy import run as nancystoch from TrainingPipelines.ToucanTTS_IntegrationTest import run as tt_integration_test from TrainingPipelines.ToucanTTS_MLS_English import run as mls from TrainingPipelines.ToucanTTS_Massive_stage1 import run as stage1 from TrainingPipelines.ToucanTTS_Massive_stage2 import run as stage2 from TrainingPipelines.ToucanTTS_Massive_stage3 import run as stage3 from TrainingPipelines.ToucanTTS_MetaCheckpoint import run as meta from TrainingPipelines.ToucanTTS_Nancy import run as nancy from TrainingPipelines.finetuning_example_multilingual import run as fine_tuning_example_multilingual from TrainingPipelines.finetuning_example_simple import run as fine_tuning_example_simple pipeline_dict = { # the finetuning example "finetuning_example_simple" : fine_tuning_example_simple, "finetuning_example_multilingual": fine_tuning_example_multilingual, # integration tests "tt_it" : tt_integration_test, # regular ToucanTTS pipelines "nancy" : nancy, "mls" : mls, "nancystoch" : nancystoch, "meta" : meta, "stage1" : stage1, "stage2" : stage2, "stage3" : stage3, # training the aligner from scratch (not recommended, best to use provided checkpoint) "aligner" : aligner, # vocoder training (not recommended, best to use provided checkpoint) "hifigan" : HiFiGAN } if __name__ == '__main__': parser = argparse.ArgumentParser(description='Training with the IMS Toucan Speech Synthesis Toolkit') parser.add_argument('pipeline', choices=list(pipeline_dict.keys()), help="Select pipeline to train.") parser.add_argument('--gpu_id', type=str, help="Which GPU(s) to run on. If not specified runs on CPU, but other than for integration tests that doesn't make much sense.", default="cpu") parser.add_argument('--resume_checkpoint', type=str, help="Path to checkpoint to resume from.", default=None) parser.add_argument('--resume', action="store_true", help="Automatically load the highest checkpoint and continue from there.", default=False) parser.add_argument('--finetune', action="store_true", help="Whether to fine-tune from the specified checkpoint.", default=False) parser.add_argument('--model_save_dir', type=str, help="Directory where the checkpoints should be saved to.", default=None) parser.add_argument('--wandb', action="store_true", help="Whether to use weights and biases to track training runs. Requires you to run wandb login and place your auth key before.", default=False) parser.add_argument('--wandb_resume_id', type=str, help="ID of a stopped wandb run to continue tracking", default=None) args = parser.parse_args() if args.finetune and args.resume_checkpoint is None and not args.resume: print("Need to provide path to checkpoint to fine-tune from!") sys.exit() if args.gpu_id == "cpu": os.environ["CUDA_VISIBLE_DEVICES"] = "" device = torch.device("cpu") print(f"No GPU specified, using CPU. Training will likely not work without GPU.") gpu_count = 1 # for technical reasons this is set to one, indicating it's not gpu_count training, even though there is no GPU in this case else: os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = f"{args.gpu_id}" device = torch.device("cuda") print(f"Making GPU {os.environ['CUDA_VISIBLE_DEVICES']} the only visible device(s).") gpu_count = len(args.gpu_id.replace(",", " ").split()) # example call for gpu_count training: # torchrun --standalone --nproc_per_node=4 --nnodes=1 run_training_pipeline.py nancy --gpu_id "1,2,3" torch.manual_seed(9665) random.seed(9665) torch.random.manual_seed(9665) torch.multiprocessing.set_sharing_strategy('file_system') pipeline_dict[args.pipeline](gpu_id=args.gpu_id, resume_checkpoint=args.resume_checkpoint, resume=args.resume, finetune=args.finetune, model_dir=args.model_save_dir, use_wandb=args.wandb, wandb_resume_id=args.wandb_resume_id, gpu_count=gpu_count)